Ivydene Gardens Home:
Damage to Tree Roots in pavements in Funchal, Madeira caused by people

READING THE TEXT IN RED ON THIS PAGE WILL MAKE IT EASIER FOR YOU TO USE EACH PAGE in my educational website.

 

THE 2 EUREKA EFFECT PAGES FOR UNDERSTANDING SOIL AND HOW PLANTS INTERACT WITH IT OUT OF 17,000:-


 

Explanation of Structure of this Website with User Guidelines Page for those photo galleries with Photos (of either ones I have taken myself or others which have been loaned only for use on this website from external sources)

HOME PAGES

Welcome - Ivydene Gardens informs you how to design, construct and maintain your private garden using organic methods and companion planting.

About Chris
Garnons-Williams - About Chris Garnons-Williams, with my


Mission Purpose - Mission Statement,

Contact Chris
Garnons-Williams - Contact Information,


Website Design History - Website Design History and

Copyright Permissions - Copyright Permissions.

Site Map - Ivydene Gardens Site Map

Sub Menu to each Page of this Topic of the HOME PAGES, with normally a * after Page you are viewing.
Page Menu may also have an Index (Flower Colour, Flowering Months, Height and Width) of all plants of that type in that Topic - Plant Photo Gallery.


Problems with trees in pavements in Funchal, Madeira in January/February 2018
PROBLEMS WITH TREES IN PAVEMENTS IN FUNCHAL, MADEIRA IN JANUARY/FEBRUARY 2019

Death of tree roots and
Death of tree trunks/branches caused by people.
Solution to problems for trees caused by people using irrigation -
Growth of Pollarded Tree in Hotel Garden in 1 year provides a water solution to this destruction.

Damage to Tree Trunks 1, 2, 3, 4 caused by people,
Damage to Tree Roots caused by people,
Area of Open Ground round trees,
New Trees in pavements 1, 2,
Irrigation of current trees,
Watersprouts on trees,
Crossing Branches in trees,
Utility Equipment with tree Foliage,
Lights on trees,
Bycycle Lane in Pavement,
Public Gardens alongside pavements,
Hotel/Private Gardens alongside pavements,
Current Permeable Pavement Surface round trees and
Irrigation and Fertilising of trees.


Every one of the 166 trees with problems in this Funchal Cathedral to the Forum Shopping Centre main road pavements can be repaired and the trees health vastly improved with minimal cost instead of cutting them all down.


130/95/ARB Tree Root Systems by Martin Dobson
, Arboricultural Advisory and Information Service:-

"Summary
The development and structure of tree root systems are described. They are wide spreading, extending radially in any direction for distances often in excess of the tree's height. Roots grow predominantly near the soil surface - over 90% of all roots, and virtually all the large structural supports, are in the the upper 60cm (24 inches) of soil. Soil disturbance within the rooting area should be avoided, as this can significantly affect tree stability and moisture uptake.

Introduction
A tree's root system is typically fairly shallow (frequently no deeper than 200 cms (80 inches), but is widespreading, with the majority of roots found in the upper 60cm of soil.
Tree roots absorb water and nutrients from the soil, serve as a store for carbohydrates and form a structural system which supports the trunk and crown. Root spread has often been underestimated - they usually extend outwards well beyond the branch spread ('drip line').

Root System Development
Initially a germinating seed has a single root, the radicle, or taproot, which grows veryically downwards provided soil conditions are suitable. Elongation is most rapid during the first 2 or 3 years but decreases with tree age and increasing soil depth. Horizontally growing side shoots (laterals) form at an early age and soon become largely responsible for structural support. Development of the taproot then declines with the result that only a small proportion of trees have a sizeable taproot at maturity. In fact, it is hard to distinguish a taproot at all in many mature trees, as injury to the juvenile taproot tip often occurs, for example, by the browsing of soil fauna, root rot, failure to penetrate hard or compact soil layers, or for nursery stock, by undercutting/transplanting. Intact taproots are usually largest just beneath the trunk and taper until they reach a depth or 50-100 cms (20-40 inches), where they often divide into several smaller, but nevertheless downwardly growing, roots.
Lateral roots near the soil surface thicken over successive years, eventually becoming the large woody roots of the framework root system of a mature tree - there are usually between 4 and 11 such roots which may become 30cm (12 inches) or more in diameter close to the stem.They taper rapidly until at 200-300 cms (80-120 inches) distance they are usually only 2-5 cm (1-2 inches) in diameter, by which stage they have lost much of their rigidity and physical strength. It is here that they tend to break when root plate failure occurs, e.g in a storm. Beyond the 'zone of rapid taper', lateral roots extend outwards in a broad zone for many metres, without appreciable further decrease in size - typically maintaining a diameter of 1-2 cm (0.5-1 inch). They are sparsley branched, perennial, woody and rope-like in appearance. Although most rope-like roots are only 500-1500 cms (200-600 inches) long, some can be 2500 cms (1000 inches) or more in length.
Roots branching from the upper side of laterals grow upwards and divide profusely in the surface soil, which is usually well-aerated, to form fans or mats of thousands of fine (<2mm diameter) non-woody 'absorbing' or 'feeder' roots. In woodland, they grow horizontally between the 2 to 3 year year old fallen leaves. Root fans permeate and hold together the litter over a considerable area; each one can occupy a thin horizontal layer of 300 square centimetres or more. Associated with these roots are much finer, thread-like, mycorrhizae. Mycorrhizae are symbiotic fungi which grow on or in roots, an association which is mutually beneficial to both the tree and the fungus. They are extremely efficient at nutrient absorption, especially phosphorus, and many trees cannot survive without them. Fine roots and their mycorrhizae are jointly responsible for moisture and nutrient uptake, whilst the perennial woody roots primarily act as conducting vessels to and from the trunk. Fine roots have a life span ranging from a few days to several years - on average surviving for 1-2 years.
Roots branching from the lower side of the laterals are known as 'sinkers roots' and usually occur within a few metres of the stem. They are usually 1-2cm (0.4-0.8 inch) in diameter, grow downwards, and in contrast to the taproot or oblique laterals, divide at their extremities into fine, non-woody roots.

Root Distribution
The variability of soil conditions and the presence of obstacles and barriers to root growth result in variable and unpredictable distribution. This is because root growth is opportunistic, occuring only where the soil environment can sustain it. Roots proliferate wherever they encounter favourable conditions, which is why the greatest root concentration is found close to the soil surface where the soil is loosest, and water, oxygen and nurients are most readily available. Soil bulk density increases and aeration decreases with increasing soil depth and consequently root numbers and size decline sharply with depth, thus below 100 cms (40 inches) it is rare to find many roots which are larger than a few mm in diameter.

Root Depth
The deepest roots are usually found directly below, or near to, the trunk as tap, oblique lateral or sinker roots. All trees can develop a deep root system (200-300 cms = 80-120 inches, deep) if soil conditions allow.
Whilst genetic characteristics of a tree play some part in rooting pattern, soil conditions are of overriding importance. Thus, downward penetration of tree roots can be halted by excessive stoniness, ironpans, compact soil layers (especially compact clays), bedrock, poor aeration and high or perched water tables. Even taproots are unable to continue downwards when they reach such conditions - either they turn horizontally or die back. Where deep roots dies, several replacement root tips can develop just behind the dead tissue and these in turn either become horizontal or die. Obstructions in the soil at shallow depths are common in the UK, and thus it is not surprising that a survey of the root plates of windthrown trees in southern England after the storms of 1987 and 1990 revealed that 44% of root plates were shallower than 100 cms (40 inches), 95% were shallower than 200 cms (80 inches) and the deepest root plate was only 300 cms (120 inches). This pattern accords well with the large amount of data available from excavations of root systems which indicate that average root depths are typically in the range 100-200 cms (40-80 inches).

Root Spread
Root spread is not confined to the area delineated by a downward projection from the branch tips as has often been supposed. Excavation has revealed that roots can grow for a considerable distance beyond the branch spread; typically extending outwards for a distance equivalent to at least the tree's height, and in some cases (particularly in infertile or compacted soils) up to 3 times tree height. Roots distant from the trunk are usually very close to the soil surface. Obstacles in the soil such as rocks, kerbs or building foundations provide a physical barrier to root extension. Roots meeting such obstacles are typically deflected by them and once clear of the obstruction they often resume their original direction of growth.

 

Factors Affecting Root Distribution
Soil Bulk Density
Root growth declines sharply with increasing density of soil. Compaction can be a natural feature on some sites, e.g caused by glaciation, or it can be induced, e.g by repeated passage of vehicles over the soil surface. Where soils have been compacted it is often difficult to establish trees because the roots fail to penetrate into the soil effectively. Trees growing in such soils develop a very shallow root system with a greater number of lateral roots in the relatively less dense surface soil. Roots reaching a compact subsurface horizon tend to deform or branch profusely and continue laterally above the plane of compaction. If these roots encounter a pathway through the compact layer, e.g. following a fissure or decayed root channel, they may resume downward growth. If soil beneath the obstruction is favourable then roots may proliferate, producing a two-tier root system. Established trees that experience sudden compaction of the soil (for example by movement of machinery on construction sites, taxis parking on pavements with only a concrete paver between it's wheel and the ground underneath, or lorries delivering supplies to shops parking on pavements, traffic running over tarmac road where gap in tarmac reveals tree root) frequently suffer root death, and crown dieback often occurs because of the inability of the tree to adapt quickly to the rapid change in soil conditions.

Soil Aeration
In order for roots to survive, oxygen must be available imediately surrounding them. Oxygen supply to roots is governed by soil structure and texture; in loose or coarse textured soils the air gaps between the soil particles are relatively large and so atmospheric oxygen diffuses readily into the soil, and the waste product of respiration, carbon dioxide, can diffuse away. This process is inhibited in fine textured (clayey), waterlogged and compacted soils because pore spaces are small and may also be filled with water - gaseous diffusion is 10,000 times quicker in air than in water.
Poor soil aeration can result in the death and decay of a large proportion of the existing root system.
Trees standing in such conditions tend to be characterised by very shallow, plate-like root systems where roots are confined to the upper, more aerobic soil. The roots of dormant trees (i.e.deciduous trees when defoliated) tolerate periods of poor aeration better than those of actively growing trees because their respiration rate is reduced and they need less oxygen.

Fertility
Fertile soil encourages the growth of shoots realtive to roots and increases the branching of roots. Roots of established trees proliferate in areas of moist soil that are rich in nutrients, especially nitrogen and phosphorus. In general, soils with low fertility produce root systems characterised by long, slender, poorly branched surface roots, whereas sites with higher fertility produce root systems that are well branched and descend deeper into the soil (provided it is sufficiently loose and oxygen is available).

 

Tree Roots and the Water Table
It is a common misconception that trees are heavily dependent upon the water table for moisture during dry summer months. In most parts of the UK the water table is situated deep in the soil, well beyond the reach of tree roots, and contributes nothing to meeting the water demand of trees. Trees, and other vegetation, are usually wholly dependent on recent rainfall and the water stored in the soil. Moffat has demonstrated that the water requirement of trees in most parts of the UK and for most soil types, even during dry summers, is available in a soil depth of about 150 cms (60 inches). In the rare cases where roots are within reach of the water table, they quite often proliferate just above it, in the 'capillary fringe' but they are unable to grow into the saturated pores of the water table because of poor aeration.

 

Practical Implications
Tree roots may extend radially a distance equivalent to at least the height of the tree and are located primarily in the upper 60 cm (24 inches) of soil. The main structural roots are usually found in the upper 30 cm (12 inches), and taper substantially within about 300cm (120 inches) of the trunk. The vast majority of fine absorbing roots are even closer to the soil surface. Thus any soil disturbance within the rooting zone will damage tree roots and should be avoided. Within the rooting area the following should especially be avoided:-

  • soil stripping and site grading
  • trenching, even a shallow (<150 mm = 6 inches) trench
  • soil compaction by movement of vehicles or storage of materials
  • deposit of toxic or impermeable materials

The nearer to the trunk that such operations occur, the greater the damage and loss of roots. This will increasingly reduce the ability of the tree to absorb sufficient water to sustain the foliage - dieback of the crown may result. IF ROOTS GREATER THAN 20CM (8 INCHES) ARE CUT WITHIN 200-300 CMS (80-120 INCHES) OF THE TRUNK, STABILITY MAY BE AFFECTED AND THE TREE MADE DANGEROUS.
There is considerable misinformation about the damage that can be caused by tree roots. It is true that under some circumstances they may cause damage to built structures. However, direct damage is rare and usually only occurs when trees are situated less than 100-200 cms (40-80 inches) away from lightly loaded structures such as boundary and garage walls, paving slabs and kerbs. However, the direct pressure exerted by tree roots can be measured and is surprisingly small. Indirect damage to structures may occur where tree roots contribute to the drying of shrinkable clay soils where foundations are inadequate to accomodate movements. Guidelines exist for determining the appropriate depth of foundations for new houses on clay soils (NHBC, 1992)."

See
Ivydene Gardens Soil: What to do about Subsidence caused by Clay? Page for further details and
Ivydene Gardens Soil: Case 1 - Clay on Sand Subsidence Page for the following:-
"The house below was built on sand at the bottom of a sloping lawn. The 12 feet wide patio stretching the length of the back of the house was laid on top of 2 feet thick of blue clay. The lawn sloped down towards the house and also sloped towards the hedge you can see on the right hand side. When it rained, the water would flow off the lawn onto the patio and then to the house. The water then percolated down to the clay, which then swelled (clay can usually absorb 40% of its own volume in water before it turns from a solid to a liquid) which caused a break in the wall above the bay window, resulting in subsidence to the building 6 years after it was built.
"


GreenBlue Urban provides a tree pit solution for cities where the tree roots get room to expand and grow from planting to maturity, get irrigated and have access for their gaseous exchange with the outside air.


Benefits of Urban Trees:-

  • Health – Urban trees have a positive impact on the incidence of skin cancer, asthma, hypertension and stress related illnesses amongst city dwellers. They also provide a number of additional psychological benefits.
  • Efficiency – One study conducted calculated that every $1 spent on tree planting, would yield $7 of savings in terms of infrastructure and energy costs.
  • Property Values – Urban trees can increase real estate values. Independent studies show a consistent increase in property values in tree lined streets of between 5-15%.
  • Crime Reduction – Researchers have discovered reductions in both violent and petty crime, including domestic violence in locations with mature urban tree planting.
  • Urban Forest Air Quality – Research has shown a 60% reduction in particulates from exhaust fumes, etc in streets with urban tree planting. For every 10% increase in a city tree canopy, ozone is reduced by between 3-7%.
  • Cooling Effects – One mature tree can produce the same cooling effect as 10 room sized air conditioners. This makes urban trees an effective tool in reducing urban heat islands and hot spots in cities. Trees can save up to 10% of local energy consumption through their moderation of local climate.


Sustainable Urban Drainage (SuDs)
Sustainable Urban Drainage (SuDs) provides opportunities to reduce flood risk and attenuate surface water runoff.
The most robust and effective schemes are implemented when, at the very earliest stages of the design process, Planners, Landscape Architects, Architects, Civil Engineers, Tree Officers and all other stakeholders work to decide on the configuration and appropriate scale of SuDs interventions on site.

  • Mitigating Climate Change
  • Increasing Biodiversity
  • Stormwater Management
  • Improved Public Realm
  • Combatting Urban Heat Island Effect
  • Health Outcomes
  • Reduced cost to public and private sectors: costs of water treatment, flood damage

GreenBlue Urban continues to design and manufacture SuDs compatible solutions for planting trees into the hard landscape. Through the use of our root directors, modular cell systems such as StrataCell and RootSpace, combined with our Arborflow system, a simple tree pit is transformed. Our systems provide the aeration, irrigation and space that the root system requires to ensure that urban trees can thrive and provide the long-term canopy cover to be efficient contributors to the SuDs train.


Trees & Climate Change
By signing up to international carbon reduction targets, world leaders have issued a challenge to everyone involved in urban space design. Whilst we cannot realistically claim that planting trees will significantly affect global climate, what we do know is that trees and climate change have a closer relationship than we once realised, and thus, green infrastructure has a major role to play in city climate mitigation and adaptation strategies.
Trees can, by providing shade and cooling through transpiration and evaporation processes, reduce temperatures around them. Clusters of well established urban trees probably represent the most effective tool available to urban designers in combating urban heat islands and heat sinks in cities. These pockets of heat accumulate in urban areas as a result of solar energy and glare reflected off engineered hard surfaces. These same surfaces store the heat and release it over night, scarcely having time to cool before the next sun rise.
As mentioned elsewhere on the site, one well established tree can have the effect of 10 room sized air conditioners – but of course from a totally sustainable, zero energy source!
The targets set for CO2 reduction are extremely challenging – by 2020, a reduction of 1.2m tonnes of CO2 per annum is looked for in the UK, and by 2050 a reduction target of 80% of 2009 levels. If trees are to play a part in implementing this reduction, a lot needs to happen quickly.

How we can help:

  • By assisting you in evaluating tree pit designs
  • Providing guidance on best practice in tree pit layout and planting methods
  • Giving you quality advice
  • Providing detailed tree pit specifications and costings
  • Supplying practical, cost effective products to assist tree establishment
  • Site support when planting
  • Supplying lists of suitably qualified contractors to execute the work

St Peter's Square in Manchester, England is an example where GreenBlue Urban has installed trees.

From the blurb on the GreenBlue Urban website, it looks as though each tree planted is a proper semi-mature tree, not a pollarded 4 metre high 2.5 cm diameter trunk of a juvenile tree. Their trees were installed in pits 16-25 square metres instead of 1 square metre in Maderia. Their trees had root directing systems for the growth in their lifetime instead of none in Madeira. Their trees were irrigated, but I did not see this either being done or evidence that it had been done in Madeira. Once the tree in Madeira had filled the 1 square metre, then it had no access to irrigation, or gaseous exchange and they could not grow their roots to support the growth created by the leaves getting it from rain and the minerals from the volcanic soil (farmers in the surrounding hills are now not allowed to use chemical fertilisers and so rely on the compost from their own fields, cattle or goats and simply the irrigation water from the levadas). What I will suggest in the Solution to Tree Problems Page is nothing as sophisticated as the GreenBlue Urban solution, but could prevent the tourists in Madeira from leaving Funchal due to overheating.

 

The following diagrams come from Plant Anatomy by A.Fahn Professor of Botany in the Hebrew University, Jerusalem, Israel. Translated from the hebrew by Sybil Broido-altman. Publ;ished by Pergamon Press Ltd in 1967. Reprinted 1972. Library of Congress Catalog Card No. 66-24822.

Root hair, a type of trichome developing on the epidermis of roots; absorbs solutions from the soil. (page 490 in Glossary of Terms).

roothairs1garnonswilliams

Section 3 of Fig 68.1 show maturing root hairs from Page 158 of Chapter 10 Epidermis.

roothairs2garnonswilliams

"Root hairs are usually viable for only a short period, generally only a few days" from Page 159 of Chapter 10 Epidermis. Since they are the roots that absorb the ions required by the tree in solution of water, then when there is no more water in the soil, where is the solution for the growth of the tree?

roothairs3garnonswilliams

This is Fig 111.1 from Page 244 of Chapter 13 The Root. This shows the root hair on the circumference of the root, with the vascular cylinder in the middle as shown in the figure below.

roothairs4garnonswilliams

This Fig 112 from Page 245 of Chapter 13 The Root.

roothairs5garnonswilliams

This is from Page 258 of Chapter 13 The Root.

"Ions are selectively transported and accumulated by roots." These ions come from the Root Hairs through the Cortex to the 'Vascular Cyclinder ... serves as the main transport system for water and ions".

Lack of water in the soil; leaves little point for the root to produce root hairs and so how does a tree whose roots are under concrete, tarmac or other impermeable material survive?


Text for Photo 1, 2, 3 and 4
 


Photo 1 taken by Chris Garnons-Williams In Madeira.
Photo 2 taken by Chris Garnons-Williams In Madeira.
 


Photo 3 taken by Chris Garnons-Williams In Madeira.


Photo 4 taken by Chris Garnons-Williams In Madeira.

Photo 1 - tree 96 from pestana promenade to forum roots between pavers IMG_6048.JPG

 

Photo 2 - tree 96 from pestana promenade to forum roots between pavers IMG_6048.JPG

The lateral between the tree and the road has been turned round by the kerb. Another deposit of impermeable material restricting the growth of this tree, further details below.

Photo 3 - tree 96 from pestana promenade to forum roots between pavers IMG_6048.JPG

It has been decided that the pavement would be tidied up by applying concrete over 2 of the laterals of this tree.

From the Death of tree roots in Madeira caused by people page:-
Practical Implications
Tree roots may extend radially a distance equivalent to at least the height of the tree and are located primarily in the upper 60 cm (24 inches) of soil. The main structural roots are usually found in the upper 30 cm (12 inches), and taper substantially within about 300cm (120 inches) of the trunk. The vast majority of fine absorbing roots are even closer to the soil surface. Thus any soil disturbance within the rooting zone will damage tree roots and should be avoided. Within the rooting area the following should especially be avoided:-

  • soil stripping and site grading
  • trenching, even a shallow (<150 mm = 6 inches) trench
  • soil compaction by movement of vehicles or storage of materials
  • deposit of toxic or impermeable materials

The nearer to the trunk that such operations occur, the greater the damage and loss of roots. This will increasingly reduce the ability of the tree to absorb sufficient water to sustain the foliage - dieback of the crown may result.
Concrete is both a toxic and an impermeable material.
 

damagetotreeroots1garnonswilliams

 

damagetotreeroots2garnonswilliams

damagetotreeroots3garnonswilliams

Photo 4 - tree 97 from pestana promenade to forum roots under pavers IMG_6047.JPG

Another example of 1 lateral root being turned by the kerb and the other by the concrete pavers. Even though pink coloured concrete was laid over a lateral root, that concrete was broken by that root hunting for water perhaps in a Hotel garden nearby and the root increased in diameter in order to support the tree, provide water and nutrients to that tree and be able to have gaseous exchange.

It would appear that the lateral root on the left has been repeatedly stepped on and I am sure that laying the remainder of the concrete edging onto the earth has been greatly appreciated by that tree as it unknowingly consumes a toxic material. You can see sections of the concrete edging on the side of the tree enclosure nearest the bottom of the photo.

The weeds are quite happily growing between the pavers, which may indicate that those pavers have been laid directly onto the earth instead of onto a valid foundation sub-base with a 2 inch (5 cms) depth of sharp washed sand above it.

damagetotreeroots4garnonswilliams

Photo 5 - tree 97 from pestana promenade to forum roots under pavers IMG_6052.JPG

Note that the kerb has been pushed out, the surrounding conrete slabs moved and the concrete paving pavement elevated by the roots.

If we are generous and assume that the square of ground bounded round that tree is 60 x 60cms, then if we assume that the roots only go out up to 3 times the tree height in compacted soils and assume that this tree is only 6oo cms high, then the root area will only be 1018 square metres (Area of circle is Pi x radius x radius. The area of ground in which this tree sits is 0.36 square metres. The area of exposed ground for the tree roots - if we exclude the fact that the tree itself is in the same space - is only 0.00335363 of the possible root space.

I wonder if that same amount of space on a human for it to breathe, drink and eat from is less than the open area of 1 nostril. You know that could present problems, but these people in Madeira are very clever and get round these minor difficulties.

If the CORE TRP SYSTEM as detailed on the Solution to tree problems page was used for the entire pavement, then a great deal more of the root area could have access to the open air.

damagetotreeroots5garnonswilliams

Photo 6 - tree 100 from pestana promenade to forum tree with roots above ground IMG_6060.JPG

Another example of 2 lateral roots being turned by the kerb and the other by the concrete pavement sections.

Photo 7 - tree 100 from pestana promenade to forum tree with roots above ground IMG_6061.JPG

Same tree from its other side.

Photo 8 - tree 101 from pestana promenade to forum tree IMG_6062.JPG

This tree has a hollow trunk as you can see with the black area and other problems at ground level.

damagetotreeroots6garnonswilliams

damagetotreeroots7garnonswilliams

damagetotreeroots8garnonswilliams

Photo 9 - tree 101 from pestana promenade to forum tree hollow trunk IMG_6068.JPG

Concrete pavers come right up to the trunk of this tree and the tree trunk is into the road.

 

 

Photo 10 - tree 101 from pestana promenade to forum tree hollow trunk IMG_6063.JPG

The hole in the trunk could be sold by the Tourist Office, who would; of course; install a thin front door (you would need to go inside your bijou residence sideways) with a toilet behind it ( you could also sleep on this toilet saving hotel bed costs), a small sink to the side and hanging space for one's clothes for a very reasonable price. A camping stove could be set up outside to cook your meals and then you could use a small fold-up stool for seating.
Household insurance to cover the flat from being blown down could be expensive. You would need to scrub off the charcoal from the burnt inside of the trunk, before you could paint it magnolia. You might not be able to extend the living space within the trunk without structural collapse.

Try not to be on the zebra crossing when it does fall if there is no repair.

damagetotreeroots9garnonswilliams

damagetotreeroots10garnonswilliams

Photo 11 - tree 91 from pestana promenade to forum IMG_6026.JPG

The grass growing between the concrete pavers will absorb any irrigation water so where else is this tree going to get soil water, soil air for oxygen, live soil organisms with their food of organic matter to produce food for the tree using that oxygen in the soil air?

Photo 12 - tree 94 from pestana promenade to forum hollow trunk IMG_6039.JPG

Photo 13 - tree 96 from pestana promenade to forum roots between pavers IMG_6043.JPG

damagetotreeroots11garnonswilliams

damagetotreeroots12garnonswilliams

damagetotreeroots13garnonswilliams

item1a1e1a1

item1d5a1b

item1a1e1a2

 

item1d5a1

item1a1e1a

item1c2e1a

item1c1a5a1

 

item1e5a1

item1a2e1a

item1c3e1a

item1c1b5a1

 

item1i1a

item1a6a1

item1c7a1

item1c1f1a

 

item1d4a1

item1a1d1a

item1c2d1a

item1c1a4a1

 

This website is being created by Chris Garnons-Williams of Ivydene Horticultural Services from it's start in 2005.

I am requesting free colour photographs of any plants grown in or sold in the United Kingdom to add to the plants in the Plant Photographic Galleries and Butterfly photographs for the Butterfly on Plant Photographic Galleries.

 

Site design and content copyright ©April 2007. Page structure amended October 2012. Page structure changed February 2019 for pages concerning Trees in pavements alongside roads in Madeira. Chris Garnons-Williams.

DISCLAIMER: Links to external sites are provided as a courtesy to visitors. Ivydene Horticultural Services are not responsible for the content and/or quality of external web sites linked from this site.  

It should be remembered that nothing is sold from this educational site, it simply tries to give you the best advice on what to use and where to get it (About Chris Garnons-Williams page details that no payment or commision to or from any donor of photos or adverts I place on the site in the Useful Data or other sections is made to Chris Garnons-Williams or Ivydene Horticultural Services). This website is a hobby and not for direct commercial gain for Ivydene Horticultural Services. There is no Google Adscenes or Search Facility in this website.

The information on this site is usually Verdana 14pt text and all is in tabular form. This can be downloaded and sorted using WORD or other word-processing software into the order that you personally require, especially for soil subsidence, the Companion Planting Tables and the pages in the Plants section. This would be suitable for use in education as well.

I put jokes in at various places to give you a smile.

 

Main Menu to Site Map of each of the Topics, with a * after Topic you are viewing.
Topic

Case Studies
...Drive
...Foundations

Companion Planting
...A
, B, C, D, E,
...F, G, H, I, J, K,
...L, M, N, O, P, Q,
...R, S, T, U, V, W,
...X, Y, Z
...Pest Control
...using Plants

Garden Construction
Garden Design
...How to Use the Colour Wheel Concepts for Selection of Flowers, Foliage and Flower Shape
...RHS Mixed Borders
......Bedding Plants
.........with
.........
Flower Shape
......Her Perennials
......and
......Other Plants
.........with
.........Flower Shape
Garden Maintenance
Glossary
Home*
Library
Offbeat Glossary
Plants
...Poisonous Plants

Soil
...Soil Nutrients

Tool Shed
Useful Data


Topic - Plant Photo Galleries

Aquatic
Bamboo
Bedding
...by Flower Shape

Bulb
...Allium/ Anemone
...Autumn Bulb
...Colchicum/ Crocus
...Dahlia
...Gladiolus
...Hippeastrum/ Lily
...Late Summer Bulb
...Narcissus
...Spring Bulb
...Tulip
...Winter
...Each of the above ...Bulb Galleries has its own set of Flower Colour Pages
...Flower Shape
Climber
...Clematis
...Climbers

Colour Wheels with number of Colours
Colour Wheel
...All Flowers 53
...All Flowers per Month 53
...
All Bee-Pollinated Flowers per Month 12
...All Foliage 212
...All Spring Foliage 212
...All Summer Foliage 212
...All Autumn Foliage 212
...All Winter Foliage 212
...Rock Plant Flowers 53
 

Conifer
Deciduous Shrub
...Shrubs - Deciduous
Deciduous Tree
...Trees - Deciduous
Evergreen Perennial
...P-Evergreen A-L
...P-Evergreen M-Z
...Flower Shape
Evergreen Shrub
...Shrubs - Evergreen
...Heather Shrub
...Heather Index
......Andromeda
......Bruckenthalia
......Calluna
......Daboecia
......Erica: Carnea
......Erica: Cinerea
......Erica: Others
Evergreen Tree
...Trees - Evergreen
Fern
Grass
Hedging
Herbaceous
Perennial

...P -Herbaceous
...Peony
...Flower Shape
...RHS Wisley
......Mixed Border
......Other Borders
Herb
Odds and Sods
Rhododendron
Rose
...RHS Wisley A-F
...RHS Wisley G-R
...RHS Wisley S-Z
...Rose Use
...
Other Roses A-F
...Other Roses G-R
...Other Roses S-Z
Soft Fruit
Top Fruit
...Apple Gallery Intro
...Cherry Gallery Intro
...Pear Gallery Intro
Vegetable
Wild Flower
with its
flower colour page,
space,
Site Map page in its flower colour

NOTE Gallery
...Blue Note
...Brown
Note
...Cream Note
...Green Note
...Mauve Note
...Multi-Cols Note
...Orange Note
...Pink A-G Note
...Pink H-Z Note
...Purple Note
...Red Note
...White A-D Note
...White E-P Note
...White Q-Z Note
...Yellow A-G Note
...Yellow H-Z Note
...Shrub/Tree Note
Poisonous
Wildflower Plants

............

Topic - Flower/Foliage Colour
Colour Wheel Galleries

Following your choice using Garden Style then that changes your Plant Selection Process
Garden Style
...Infill Plants
...12 Bloom Colours per Month Index
...12 Foliage Colours per Month Index
...All Plants Index
...Cultivation, Position, Use Index
...Shape, Form
Index

or
you could use these Flower Colour Wheels with number of colours
All Flowers 53
...Use of Plant and
...Flower Shape

All Flowers per Month 12
with its
Explanation of
Structure of this Website with

...User Guidelines
All Bee-Pollinated Flowers per Month 12
...Index
Rock Garden and Alpine Flower Colour Wheel with number of colours
Rock Plant Flowers 53
...Rock Plant Photos

or
these Foliage Colour Wheels structures, which I have done but until I can take the photos and I am certain of the plant label's validity, these may not progress much further
All Foliage 212
All Spring Foliage 212
All Summer Foliage 212
All Autumn Foliage 212
All Winter Foliage 212

or
Flower Colour Wheel without photos, but with links to photos
12 Bloom Colours per Month Index
...All Plants Index

............


 

Topic - Wildlife on Plant Photo Gallery

Butterfly
Usage of Plants
by Egg, Caterpillar, Chrysalis and Butterfly

Egg, Caterpillar, Chrysalis and Butterfly usage of
Plant A-C
Plant C-M
Plant N-W
Butterfly usage of Plant

followed by all the Wild Flower Family Pages:-

There are 180 families in the Wildflowers of the UK and they have been split up into 22 Galleries to allow space for up to 100 plants per gallery.

Each plant named in each of the Wildflower Family Pages may have a link to its Plant Description Page in its Common Name in one of those Wildflower Plant Galleries and will have links to external sites to purchase the plant or seed in its Botanical Name, to see photos in its Flowering Months and to read habitat details in its Habitat Column.


57(o)58 Crucifer (Cabbage/ Mustard) 1
indicates 57 Plant Description Pages with photos and 58 plants with photos in that Crucifer Family Page 1:-

Wild Flower

ad borage gallery
...(o)2 Adder's Tongue
...Amaranth
...(o)3 Arrow-Grass
...(o)4 Arum
...1(o)1 Balsam
...Bamboo
...2(o)2 Barberry
...(o)10 Bedstraw
...(o)7 Beech
...(o)12 Bellflower
...(o)5 Bindweed
...(o)4 Birch
...(o)1 Birds-Nest
...(o)1 Birthwort
...(o)2 Bogbean
...(o)1 Bog Myrtle
...(o)23 Borage

box crowberry gallery
...1(o)1 Box
...(o)11 Broomrape
...2(o)2 Buckthorn
...(o)1 Buddleia
...(o)1 Bur-reed
...29(o)30 Buttercup
...(o)6 Butterwort
...6(o)6 Clubmoss
...(o)2 Cornel (Dogwood)
...(o)1 Crowberry

cabbages gallery
...57(o)58 Crucifer (Cabbage/ Mustard) 1
...(o)Crucifer (Cabbage/Mustard) 2

cypress cud gallery
...Cypress
...(o)4 Daffodil
...(o)23 Daisy
...(o)21 Daisy Cudweeds
...(o)16 Daisy Chamomiles
...3(o)22 Daisy Thistle
...(o)17 Daisy Catsears

hawk dock gallery
...(o)5 Daisy Hawkweeds
...(o)5 Daisy Hawksbeards
...(o)2 Daphne
...(o)1 Diapensia
...(o)10 Dock Bistorts
...(o)7 Dock Sorrels

duckw fern gallery
...(o)4 Duckweed
...(o)1 Eel-Grass
...(o)2 Elm

figwort fum gallery
...(o)24 Figwort - Mulleins
...(o)21 Figwort - Speedwells
...2(o)2 Filmy Fern
...(o)4 Flax
...(o)1 Flowering-Rush
...(o)3 Frog-bit
...7(o)7 Fumitory

g goosefoot gallery
...1(o)10 Gentian
...(o)16 Geranium
...(o)4 Glassworts
...(o)2 Gooseberry
...(o)13 Goosefoot

grasses123 gallery
...(o)8 Grass 1
...(o)8 Grass 2
...(o)8 Grass 3

g brome gallery
...(o)8 Soft Bromes 1
...(o)8 Soft Bromes 2
...(o)9 Soft Bromes 3

h lobelia gallery
...(o)2 Hazel
...(o)15 Heath
...(o)1 Hemp
...(o)1 Herb-Paris
...(o)1 Holly
...(o)7 Honeysuckle
...(o)1 Horned-Pondweed
...2(o)2 Hornwort
...5(o)5 Horsetail
...(o)9 Iris
...(o)1 Ivy
...(o)1 Jacobs Ladder
...(o)17 Lily
...(o)7 Lily Garlic
...(o)2 Lime
...(o)2 Lobelia

l olive gallery
...(o)1 Loosestrife
...(o)5 Mallow
...(o)4 Maple
...(o)1 Mares-tail
...(o)1 Marsh Pennywort
...1(o)1 Melon (Gourd/ Cucumber)
...(o)2 Mesembry-anthemum
...3(o)3 Mignonette
...3(o)3 Milkwort
...(o)1 Mistletoe
...(o)1 Moschatel
...Naiad
...4(o)4 Nettle
...(o)7 Nightshade
...(o)1 Oleaster
...(o)3 Olive

orchid parn gallery
...(o)22 Orchid 1
...(o)22 Orchid 2

peaflowers gallery
...(o)20 Peaflower
...(o)31 Peaflower Clover
...(o)18 Peaflower Vetches/Peas
...(o)1 Parnassus-Grass

peony pink gallery
...Peony
...(o)1 Periwinkle
...Pillwort
...Pine
...7(o)23 Pink 1
...7(o)24 Pink 2

p rockrose gallery
...Pipewort
...(o)1 Pitcher-Plant
...(o)6 Plantain
...26(o)27 Polypody
...(o)4 Pondweed
...8(o)8 Poppy
...16(o)16 Primrose
...3(o)3 Purslane
...Quillwort
...Rannock Rush
...2(o)2 Reedmace
...4(o)4 Rockrose

rose12 gallery
...(o)30 Rose 1
...(o)23 Rose 2
...1(o)1 Royal Fern

rush saxi gallery
...(o)1 Rush
...(o)1 Rush Woodrushes
...9(o)9 Saint Johns Wort
...Saltmarsh Grasses
...(o)1 Sandalwood
...(o)1 Saxifrage

sea sedge2 gallery
...Seaheath
...1(o)3 Sea Lavender
...(o)2 Sedge Rush-like
...(o)1 Sedges Carex 1
...1(o)1 Sedges Carex 2

sedge3 crop gallery
...(o)1 Sedges Carex 3
...(o)1 Sedges Carex 4
...(o)1 Spindle-Tree
...(o)13 Spurge
...(o)1 Stonecrop

sun thyme gallery
...(o)1 Sundew
...1(o)1 Tamarisk
...Tassel Pondweed
...(o)4 Teasel
...(o)20 Thyme 1
...(o)21 Thyme 2

umb violet gallery
...15(o)15 Umbellifer 1
...15(o)15 Umbellifer 2
...(o)5 Valerian
...(o)1 Verbena
...11(o)11 Violet

water yew gallery
...1(o)1 Water Fern
...2(o)2 Waterlily
...1(o)1 Water Milfoil
...1(o)1 Water Plantain
...2(o)2 Water Starwort
...Waterwort
...(o)9 Willow
...(o)1 Willow-Herb
...(o)5 Wintergreen
...(o)1 Wood-Sorrel
...Yam
...Yew

The Site Map Page that you link to from the Menu in the above row for the Wildflower Gallery contains all the native UK plants which have their Plant Description Pages in the other 22 Wildflower Galleries. It also has Wildflower Index Pages, Flower Colour Comparison Pages and links to the 180 Wildflower Family Pages as shown in the menu above.


 

 

Links to external websites like the link to "the Man walking in front of car to warn pedestrians of a horseless vehicle approaching" would be correct when I inserted it after March 2007, but it is possible that those horseless vehicles may now exceed the walking pace of that man and thus that link will currently be br
ok en .... .....

My advice is Google the name on the link and see if you can find the new link. If you sent me an email after clicking Ivydene Horticultural Services text under the Worm Logo on any page, then; as the first after March 2010 you would be the third emailer since 2007, I could then change that link in that 1 of the 15,743 pages. Currently (August 2016), I can receive but not send emails, so please provide phone number/country or full postal address if reply required.

 


Other websites provide you with cookies - I am sorry but I am too poor to afford them. If I save the pennies from my pension for the next visitor, I am almost certain in March 2023, that I could afford to make that 4th visitor to this website a Never Fail Cake. I would then be able to save for more years for the postage.

 

It is worth remembering that especially with roses that the colour of the petals of the flower may change - The following photos are of Rosa 'Lincolnshire Poacher' which I took on the same day in R.V. Roger's Nursery Field:-

rosalincolnshirepoacherflot91a1a1a

Closed Bud

rosalincolnshirepoacherflot92a1a1a

Opening Bud

rosalincolnshirepoacherflot93a1a1a

Juvenile Flower

rosalincolnshirepoacherflot94a1a1a

Older Juvenile Flower

rosalincolnshirepoacherflot95a1a1a

Middle-aged Flower - Flower Colour in Season in its
Rose Description Page is
"Buff Yellow, with a very slight pink tint at the edges in May-October."

rosalincolnshirepoacherflot96a1a1a

Mature Flower

rosalincolnshirepoacherflot97a1a1a

Juvenile Flower and Dying Flower

rosalincolnshirepoacherflot98a1a1a

Form of Rose Bush

There are 720 roses in the Rose Galleries; many of which have the above series of pictures in their respective Rose Description Page.

So one might avoid the disappointment that the 2 elephants had when their trunks were entwined instead of them each carrying their trunk using their own trunk, and your disappointment of buying a rose to discover that the colour you bought it for is only the case when it has its juvenile flowers; if you look at all the photos of the roses in the respective Rose Description Page!!!!

 

Fragrant Plants adds the use of another of your 5 senses in your garden:-

Sense of Fragrance from Roy Genders

Fragrant Plants:-
Trees and Shrubs with Scented Flowers.

Trees and Shrubs with Scented Leaves.

Trees and Shrubs with Aromatic Bark.

Shrubs bearing Scented Flowers for an
Acid Soil
.

Shrubs bearing Scented Flowers for a
Chalky or Limestone Soi
l.

Shrubs bearing Scented leaves for a
Sandy Soil
.

Herbaceous Plants with Scented Flowers.

Herbaceous Plants with Scented Leaves.

Annual and Biennial Plants with Scented Flowers or Leaves.

Bulbs and Corms with Scented Flowers.

Scented Plants of Climbing and Trailing Habit.

Winter-flowering Plants with Scented Flowers.

Night-scented Flowering Plants.

Scented Aquatic Plants.

Plants with Scented Fruits.

Plants with Scented Roots.

Trees and Shrubs with Scented Wood.

Trees and Shrubs with Scented Gums.

Scented Cacti and Succulents.

Plants bearing Flowers or Leaves of Unpleasant Smell.