Ivydene Gardens Home: |
READING THE TEXT IN RED ON THIS PAGE WILL MAKE IT EASIER FOR YOU TO USE EACH PAGE in my educational website.
THE 2 EUREKA EFFECT PAGES FOR UNDERSTANDING SOIL AND HOW PLANTS INTERACT WITH IT OUT OF 17,000:-
Explanation of Structure of this Website with User Guidelines Page for those photo galleries with Photos (of either ones I have taken myself or others which have been loaned only for use on this website from external sources) |
HOME PAGES Welcome - Ivydene Gardens informs you how to design, construct and maintain your private garden using organic methods and companion planting. Sub Menu to each Page of this Topic of the HOME PAGES, with normally a * after Page you are viewing.
Damage to Tree Trunks 1, 2, 3, 4 caused by people, Camera Photo Galleries:- Will visitors to Madeira worry about having branches or trees in public places fall on them? No; according to Engineer Francisco Pedro Freitas Andrade of Est. Marmeleiros, No 1, Jardins & Espaces Verdes who is Chef de Diviso Câmara Municipal do Funchal; Departamento de Ciência e de Recursos Naturais; Divisão de Jardins e Espaços Verdes Urbanos in charge of the trees within the pavements within the area controlled by Funchal Municipality - See Monitoring of Trees in pavements in Funchal, Madeira from September 2019 to February 2010 1, 2 pages by his department. PROBLEMS WITH TREES IN PAVEMENTS IN ST. PETER PORT, GUERNSEY IN SEPTEMBER 2019 |
|
|
"Summary Introduction Root System Development Root Distribution Root Depth Root Spread
Factors Affecting Root Distribution Soil Aeration Fertility
Tree Roots and the Water Table
Practical Implications
The nearer to the trunk that such operations occur, the greater the damage and loss of roots. This will increasingly reduce the ability of the tree to absorb sufficient water to sustain the foliage - dieback of the crown may result. IF ROOTS GREATER THAN 20CM (8 INCHES) ARE CUT WITHIN 200-300 CMS (80-120 INCHES) OF THE TRUNK, STABILITY MAY BE AFFECTED AND THE TREE MADE DANGEROUS. See |
GreenBlue Urban continues to design and manufacture SuDs compatible solutions for planting trees into the hard landscape. Through the use of our root directors, modular cell systems such as StrataCell and RootSpace, combined with our Arborflow system, a simple tree pit is transformed. Our systems provide the aeration, irrigation and space that the root system requires to ensure that urban trees can thrive and provide the long-term canopy cover to be efficient contributors to the SuDs train. How we can help:
St Peter's Square in Manchester, England is an example where GreenBlue Urban has installed trees. From the blurb on the GreenBlue Urban website, it looks as though each tree planted is a proper semi-mature tree, not a pollarded 4 metre high 2.5 cm diameter trunk of a juvenile tree. Their trees were installed in pits 16-25 square metres instead of 1 square metre in Maderia. Their trees had root directing systems for the growth in their lifetime instead of none in Madeira. Their trees were irrigated, but I did not see this either being done or evidence that it had been done in Madeira. Once the tree in Madeira had filled the 1 square metre, then it had no access to irrigation, or gaseous exchange and they could not grow their roots to support the growth created by the leaves getting it from rain and the minerals from the volcanic soil (farmers in the surrounding hills are now not allowed to use chemical fertilisers and so rely on the compost from their own fields, cattle or goats and simply the irrigation water from the levadas). What I will suggest in the Solution to Tree Problems Page is nothing as sophisticated as the GreenBlue Urban solution, but could prevent the tourists in Madeira from leaving Funchal due to overheating. |
|
The following diagrams come from Plant Anatomy by A.Fahn Professor of Botany in the Hebrew University, Jerusalem, Israel. Translated from the hebrew by Sybil Broido-altman. Publ;ished by Pergamon Press Ltd in 1967. Reprinted 1972. Library of Congress Catalog Card No. 66-24822. Root hair, a type of trichome developing on the epidermis of roots; absorbs solutions from the soil. (page 490 in Glossary of Terms). Section 3 of Fig 68.1 show maturing root hairs from Page 158 of Chapter 10 Epidermis. "Root hairs are usually viable for only a short period, generally only a few days" from Page 159 of Chapter 10 Epidermis. Since they are the roots that absorb the ions required by the tree in solution of water, then when there is no more water in the soil, where is the solution for the growth of the tree? This is Fig 111.1 from Page 244 of Chapter 13 The Root. This shows the root hair on the circumference of the root, with the vascular cylinder in the middle as shown in the figure below. This Fig 112 from Page 245 of Chapter 13 The Root. This is from Page 258 of Chapter 13 The Root. "Ions are selectively transported and accumulated by roots." These ions come from the Root Hairs through the Cortex to the 'Vascular Cyclinder ... serves as the main transport system for water and ions". Lack of water in the soil; leaves little point for the root to produce root hairs and so how does a tree whose roots are under concrete, tarmac or other impermeable material survive? |
|||
|
|
|
|
Photo 1 - tree 96 from pestana promenade to forum roots between pavers IMG_6048.JPG
Photo 2 - tree 96 from pestana promenade to forum roots between pavers IMG_6048.JPG The lateral between the tree and the road has been turned round by the kerb. Another deposit of impermeable material restricting the growth of this tree, further details below. Photo 3 - tree 96 from pestana promenade to forum roots between pavers IMG_6048.JPG It has been decided that the pavement would be tidied up by applying concrete over 2 of the laterals of this tree. From the Death of tree roots in Madeira caused by people page:-
The nearer to the trunk that such operations occur, the greater the damage and loss of roots. This will increasingly reduce the ability of the tree to absorb sufficient water to sustain the foliage - dieback of the crown may result. |
|
||
Photo 4 - tree 97 from pestana promenade to forum roots under pavers IMG_6047.JPG Another example of 1 lateral root being turned by the kerb and the other by the concrete pavers. Even though pink coloured concrete was laid over a lateral root, that concrete was broken by that root hunting for water perhaps in a Hotel garden nearby and the root increased in diameter in order to support the tree, provide water and nutrients to that tree and be able to have gaseous exchange. It would appear that the lateral root on the left has been repeatedly stepped on and I am sure that laying the remainder of the concrete edging onto the earth has been greatly appreciated by that tree as it unknowingly consumes a toxic material. You can see sections of the concrete edging on the side of the tree enclosure nearest the bottom of the photo. The weeds are quite happily growing between the pavers, which may indicate that those pavers have been laid directly onto the earth instead of onto a valid foundation sub-base with a 2 inch (5 cms) depth of sharp washed sand above it. |
|||
Photo 5 - tree 97 from pestana promenade to forum roots under pavers IMG_6052.JPG Note that the kerb has been pushed out, the surrounding conrete slabs moved and the concrete paving pavement elevated by the roots. If we are generous and assume that the square of ground bounded round that tree is 60 x 60cms, then if we assume that the roots only go out up to 3 times the tree height in compacted soils and assume that this tree is only 6oo cms high, then the root area will only be 1018 square metres (Area of circle is Pi x radius x radius. The area of ground in which this tree sits is 0.36 square metres. The area of exposed ground for the tree roots - if we exclude the fact that the tree itself is in the same space - is only 0.00335363 of the possible root space. I wonder if that same amount of space on a human for it to breathe, drink and eat from is less than the open area of 1 nostril. You know that could present problems, but these people in Madeira are very clever and get round these minor difficulties. If the CORE TRP SYSTEM as detailed on the Solution to tree problems page was used for the entire pavement, then a great deal more of the root area could have access to the open air. |
|||
Photo 6 - tree 100 from pestana promenade to forum tree with roots above ground IMG_6060.JPG Another example of 2 lateral roots being turned by the kerb and the other by the concrete pavement sections. Photo 7 - tree 100 from pestana promenade to forum tree with roots above ground IMG_6061.JPG Same tree from its other side. Photo 8 - tree 101 from pestana promenade to forum tree IMG_6062.JPG This tree has a hollow trunk as you can see with the black area and other problems at ground level. |
|||
Photo 9 - tree 101 from pestana promenade to forum tree hollow trunk IMG_6068.JPG Concrete pavers come right up to the trunk of this tree and the tree trunk is into the road.
Photo 10 - tree 101 from pestana promenade to forum tree hollow trunk IMG_6063.JPG The hole in the trunk could be sold by the Tourist Office, who would; of course; install a thin front door (you would need to go inside your bijou residence sideways) with a toilet behind it ( you could also sleep on this toilet saving hotel bed costs), a small sink to the side and hanging space for one's clothes for a very reasonable price. A camping stove could be set up outside to cook your meals and then you could use a small fold-up stool for seating. Try not to be on the zebra crossing when it does fall if there is no repair. |
|||
Photo 11 - tree 91 from pestana promenade to forum IMG_6026.JPG The grass growing between the concrete pavers will absorb any irrigation water so where else is this tree going to get soil water, soil air for oxygen, live soil organisms with their food of organic matter to produce food for the tree using that oxygen in the soil air? Photo 12 - tree 94 from pestana promenade to forum hollow trunk IMG_6039.JPG Photo 13 - tree 96 from pestana promenade to forum roots between pavers IMG_6043.JPG |
|||
|
|||
|
|||
|
|||
|
|||
This website is being created by Chris Garnons-Williams of Ivydene Horticultural Services from it's start in 2005. I am requesting free colour photographs of any plants grown in or sold in the United Kingdom to add to the plants in the Plant Photographic Galleries and Butterfly photographs for the Butterfly on Plant Photographic Galleries. |
Site design and content copyright ©April 2007. Page structure amended October 2012. Page structure changed February 2019 for pages concerning Trees in pavements alongside roads in Madeira. Chris Garnons-Williams. |
It should be remembered that nothing is sold from this educational site, it simply tries to give you the best advice on what to use and where to get it (About Chris Garnons-Williams page details that no payment or commision to or from any donor of photos or adverts I place on the site in the Useful Data or other sections is made to Chris Garnons-Williams or Ivydene Horticultural Services). This website is a hobby and not for direct commercial gain for Ivydene Horticultural Services. There is no Google Adscenes or Search Facility in this website. The information on this site is usually Verdana 14pt text and all is in tabular form. This can be downloaded and sorted using WORD or other word-processing software into the order that you personally require, especially for soil subsidence, the Companion Planting Tables and the pages in the Plants section. This would be suitable for use in education as well. I put jokes in at various places to give you a smile. |
|
|
More Details |
Cultural Needs of Plants "Understanding Fern Needs |
|
It is worth remembering that especially with roses that the colour of the petals of the flower may change - The following photos are of Rosa 'Lincolnshire Poacher' which I took on the same day in R.V. Roger's Nursery Field:- |
Closed Bud |
Opening Bud |
Juvenile Flower |
Older Juvenile Flower |
Middle-aged Flower - Flower Colour in Season in its |
Mature Flower |
Juvenile Flower and Dying Flower |
Form of Rose Bush |
There are 720 roses in the Rose Galleries; many of which have the above series of pictures in their respective Rose Description Page. So one might avoid the disappointment that the 2 elephants had when their trunks were entwined instead of them each carrying their trunk using their own trunk, and your disappointment of buying a rose to discover that the colour you bought it for is only the case when it has its juvenile flowers; if you look at all the photos of the roses in the respective Rose Description Page!!!! |
|
There are 180 families in the Wildflowers of the UK and they have been split up into 22 Galleries to allow space for up to 100 plants per gallery. Each plant named in each of the Wildflower Family Pages may have a link to:- its Plant Description Page in its Common Name in one of those Wildflower Plant Galleries and it does have links:- to external sites to purchase the plant or seed in its Botanical Name, to see photos in its Flowering Months and to read habitat details in its Habitat Column. |
|
Links to external websites like the link to "the Man walking in front of car to warn pedestrians of a horseless vehicle approaching" would be correct when I inserted it after March 2007, but it is possible that those horseless vehicles may now exceed the walking pace of that man and thus that link will currently be br My advice is Google the name on the link and see if you can find the new link. If you sent me an email after clicking Ivydene Horticultural Services text under the Worm Logo on any page, then; as the first after March 2010 you would be the third emailer since 2007, I could then change that link in that 1 of the 15,743 pages. Currently (August 2016). Other websites provide you with cookies - I am sorry but I am too poor to afford them. If I save the pennies from my pension for the next visitor, I am almost certain in March 2023, that I could afford to make that 4th visitor to this website a Never Fail Cake. I would then be able to save for more years for the postage. |
The following is from "Some time around 600 million years ago, green algae began to move out of shallow fresh waters and onto the land. They were the ancestors of all land plants... Today, plants make up to 80% of the mass of all life on Earth and are the base of the food chains that support nearly all terrestrial organisms.... But the algal ancestors of land plants had no roots, no way to store or transport water, and no experience in extracting nutrients from solid ground. How did they manage the fraught passage onto dry land? ... It was only by striking up new relationships with fungi that algae were able to make it onto land. These early alliances evolved into what we now call mycorrhizal relationships. Today, more than 90% of all plant species depend on mycorrhizal fungi. Mycorrhizal associations are the rule not the exception: a more fundamental part of planthood than fruit, flowers, leaves, wood or even roots.... For the relationship to thrive, both plant and fungus must make a good metabolic match. In photosynthesis, plants harvest carbon from the atmosphere and forge the energy-rich carbon compounds - sugars and lipids - on which much of the rest of life depends. By growing within plant roots, mycorrhizal fungi acquire privileged access to these sources of energy: they get fed. However, photosynthesis is not enough to support life. Plants and fungi need more than a source of energy. Water and minerals must be scavenged from the ground - full of textures and micropores, electrically charged cavities and labyrinthine rot-scapes. Fungi are deft rangers in this wilderness and can forage in a way that plants can not. By hosting fungi within their roots, plants gain hugely improved access to these sources of nutrients. They, too, get fed. By partnering, plants gain a prosthetic fungus, and fungi gain a prosthetic plant. Both use the other to extend their reach.... By the time the first roots evolved, the mycorrhizal association was already some 50 million years old. Mycorrhizal fungi are the roots of all subsequent life on land. Today, hundreds of millions of years later, plants have evolved, faster-growing, opportunistic roots that behave more like fungi. But even these roots cannot out-manoeuvre fungi when it comes to exploring the soil. Mycorrhizal hyphae are 50 times finer than the finest roots and can exceeed the length of a plant's roots by as much as a 100 times. Their mycelium makes up between a third and a half of the living mass of soils. The numbers are astronomical. Globally, the total length of mycorrhizal hyphae in the top 10 centimetres (4 inches) of soil is around half the width of our galaxy (4.5 x 10 to the power 17 kilometres versus 9.5 x 10 to the power 17 kilometres). If these hyphae were ironed into a flat sheet, their combined surface area would cover every inch of dry land on Earth 2.5 times over.... In their relationship, plants and mycorrhizal fungi enact a polarity: plant shoots engage with the light and air, while the fungi and plant roots engage with the solid ground. Plants pack up light and carbon dioxide into sugars and lipids. Mycorrhizal fungi unpack nutrients bound up in rock and decomposing material. These are fungi with a dual niche: part of their life happens within the plant, part in the soil. They are stationed at the entry point of carbon into terrestrial life cycles and stitch the atmosphere into relation with the ground. To this day, mycorrhizal fungi help plants cope with drought, heat and many other stresses life on land has presented from the very beginning, as do the symbiotic fungi that crowd into plant leaves and stems. What we call 'plants' are in fact fungi that have evolved to farm algae, and algae that have evolved to farm fungi.... Mycorrhizal fungi can provide up to 80% of a plant's nitrogen, and as much as 100% of its phosphorus. Fungi supply other crucial nutrients to plants, such as zinc and copper. They also supply plants with water, and help them to survive drought as they have done since the earliest days of life on land. In return, plants allocate up to 30% of the carbon they harvest to their mycorrhizal partners.... And yet mycorrhizal fungi do more than feed plants. Some describe them as keystone organisms; others prefer the term 'ecosystem engineers'. Mycorrhizal mycelium is a sticky living seam that holds soil together; remove the fungi, and the ground washes away. Mycorrhizal fungi increase the volume of water that the soil can absorb, reducing the quantity of nutrients leached out of the soil by rainfall by as much as 50%. Of the carbon that is found in soils - which, remarkably, amounts to twice the amount of carbon found in plants and the atmosphere combined - a substantial proportion is bound up in tough organic compounds produced by mycorrhizal fungi. The carbon that floods into the soil through mycorrhizal channels supports intricate food webs. Besides the hundreds or thousands of metres of fungal mycelium in a teaspoon of healthy soil, there are more bacteria, protists, insects and arthropods than the number of humans who have ever lived on Earth. Mycorrhizal fungi can increase the quality of a harvest. They can also increase the ability of crops to compete with weeds and enhance their resistance to diseases by priming plant's immune systems. They can make crops less susceptible to drought and heat, and more resistant to salinity and heavy metals. They even boost the ability of plants to fight off attacks from insect pests by stimulating the production of defensive chemicals... But over the course of the twentieth century, our neglect has led us into trouble. In viewing soils as more or less lifeless places, industrial agricultural practices have ravaged the undergound communities that sustain the life we eat.... A large study published in 2018 suggested that the 'alarming deterioration' of the health of trees across Europe was caused by a disruption of their mycorrhizal relationships, brought about by nitrogen pollution." from Before Roots chapter by Merlin Sheldrake.
"We do know, that this fragile, generative world has been damaged by intensive farming, pollution, deforestation and global heating. A third of the planet's land has been severely degraded and 24 billion tons of fertile soil are destroyed every year through intensive farming, according to the Global Land Outlook. Topsoil is where 95% of the planet's food is grown and is very delicate. It takes more than 100 years to build 5mm of soil, and it can be destroyed shockingly easily. This destruction and degradation of the soil is created by intensive farming practices such as heavy mechanised soil tilling, which loosens and rips away any plant cover, leaving the soil bare. It is also caused by the overgrazing of animals, as well as forest fires and heavy construction work. These factors disturb the soil and leave it exposed to erosion from wind and water, damaging the complicated systems underneath its top layer... We are losing good soil at an estimated 100 times faster rate than we can remake and heal it. The world's soils are thought to store approximately 15 thousand million tonnes of carbon - 3 times as much as all of our planet's terrestrial vegetation combined. Soils hold twice as much carbon as the atmosphere, and when soil disintegrates, the carbon is released. In the last 40 years the soil in the UK's croplands lost 10% of the carbon it could store. In a time of climate crisis, soil's quiet potency, its ability to store carbon safely, is utterly essential to our future survival.... We know that soils are being destroyed, and that with that comes a higher risk of floods, and a more unpredictable and unreliable food and water system. An Intergovernmental Science-Policy Platform on Biodiversity and Ecostem Services report in 2018 told us clearly that land degradationis already putting the welfare of two-fifths of humanity at risk, and that urgent action is needed to avoid further danger. There are many things we can do to protect soils, and the organisms, plants and connections that thrive within them. Actions that can support and heal soil structure include
Such regimes allow soil structure to remain intact, and protect the soil by allowing crop residues to stay on the surface. " from Strange Soil chapter by Rebecca Tamas. |
Due to intensive farming techniques and chemical fertilisers this has occurred:- The BBC has produced an article as to why modern food as lost its nutrients. |
The following about trees in pavements show why when the roots are denied access to air, water and nutrients even the fungi cannot work to support the trees. Pavements of Funchal, Madeira |
The following addition of this mulch improved the clay soil, so that A 150mm deep mulch of mixed peat, sharp washed sand and horticultural grit was applied on top of a heavy clay soil to improve its structure, and stop the plants therein from drowning, at £10 a square metre. The mix was:
The following was then sent to me:-
and the following was sent to me in October 2004:- An unsuccessful planting scheme had left bare areas of garden as plants failed to survive winter in the waterlogged clay soil. The loss of numerous plants and the cost of replacing them had left us disheartened. It was evident that remedial action was need in the form of a mixture of gravel, sand and peat to create an organic loam. Approximately six inches was added in April and left to settle and do its job. By July there was a noticeable difference in the quality of the soil and the plants. Shrubs with sparse, mottled leaves were looking glossy and robust, overall growth had increased (including the weeds!) and the soil was holding its moisture well. But the biggest difference came in the confidence it gave us to transform the garden. The borders used to be a no-go area between May and September as the clay baked and cracked, but the new soil was easy to handle and weeds could be successfully removed. We realised that there are no quick fixes - the key to a healthy garden is rich, nutritous soil. Once our plants began to thrive we were optimistic that, with good advice, we could create a garden to be proud of. |