Case Studies Pages
Site Map

Case
1 - Prepare for Sale

2 - Structural Design
.....2a - New Garage
.....2b - Redesign for My Back Garden

 

 

3 - Drive Foundations
.....3a Clay on Sand Subsidence of New House and
...........there are Other Factors causing subsidence. Part
..............of solution is to use
...........Aquadyne Drainage System to transport
..............rainwater within garden area to evergreen
..............plants that can use it.

Pages about soil and why clay causes problems:-
How Soil is created with organic matter and
why Organic Matter is important to Soil?

Soil Formation combines Rock Particles, Humus, Water and Air into Soil Texture with
Soil Structure, which is the interaction between clay domains, organic matter, silt and sand particles. So
How is Clay created? ,
How is Humus made? and
How does Water act in the Soil?

What are the Soil Nutrients besides
the Carbon Cycle and
the Nitrogen Cycle.

What types of organisms are found in the soil? and
how do soil microbes recycle nutrients?

What Pysical changes occur in Soil because of weather? and what Chemical changes occur in Soil because of weather? leading to
how are Chemicals stored and released from Soil? with
how is material lost from the soil?

This leads to an
Action plan for you to do with your soil and

3b Pre-Building Work for Builders to treat polluted soil using phyto-remediation plants.
Perhaps after Builders have read the following section:-

item2a

Then, they could follow my following Suggested Action Plan for Builders after they have built their houses:-
Lay the
Aquadyne Drainage System
round the perimeter of the new garden areas.
Next to it then plant 1 of these Instant Hedges on the non-house wall sides to absorb the rainwater collected by that drainage system:-

And finally on the same day pour a depth of 11 inches (27.5 cms) depth of the builders soil mixture detailed below onto the remainder of the new garden areas and alongside the Instant Hedging.

To provide a different requirement from the current plants used in the above Instant Hedges, plants for each of the following could be used instead:-

A fortnight later the following type of turf containing RTF (Rhizomatous Tall Fescue), bred by Barenbrug Research USA, could be laid over the proposed lawn areas.

The roots of that grass will reach the clay below and stabilise the new builders soil mix, before the proposed owners view the property a month later.

The builders soil mix should within 3 months become roughly the same proportion of clay, silt and sand which is within a Sandy Clay Loam to create a sweet spot for growing plants as shown on How is material lost from the soil? Page, since it will mix with the clay below.

 



4a - Garden Uses
......4b - Garden Plant Plan

5 - Wildlife Garden

6 - Vegetable Garden

7 - Repair of Concrete Pond

8 - Creation of Pond

 

Design Cases

When designing a garden, it is vital to know who and for how long the resulting designed and landscaped garden is going to be maintained by. The book 'The One Hour Garden' describes what maintenance work can be done in the time that you have allotted; and therefore what besides a lawn, you can have in your garden. My redesign and construction work to be done on my 3 gardens - as shown by Case 2 - must be to reduce the maintenance time required to the time I have available. If the gardens are first weeded, pruned, mulched, mown and bare earth converted to lawns using grass seed, then construction can take place in the future - as free time allows during a week or fortnight after the maintenance has been done.

In Case 4, the combination of the Structural and Planting Designs would create a garden that I would be able to maintain in one day a fortnight. I would install a 3" deep mulch in the spring on the beds, so that I can prune the shrubs/trees and hoe the odd weed; whilst the father mows the lawns, the mother tends the vegetable garden and their teenage daughters play football!!

The children in Case 5 loved to look at creepy-crawlies and wildlife, so that together with low-cost the design for different areas in a terrace house garden was created.

 

Construction Cases

Case 3 is building a drive on clay and it is important to get the part you will not see - the foundations - done correctly.

Case 8 is creating a pond with its pitfalls for foundations.

 

Maintenance Cases

If you are asking someone to maintain your garden, then do provide the complete picture. If as in Case 1, you intend to sell the property, then look at this - as not a maintenance but as a selling job - and get that job done instead.

Case 6 is creating a vegetable garden in a back garden during the maintenance program of one day a fortnight to maintain it and the remainder of the back and front gardens. This was done over 7 years using a crop rotation system

Concrete ponds are likely to crack open due to movement in the ground levels due to being in clay or vibration caused by road traffic if it is fairly close. Case 7 shows no planting shelves for the pond plants.

 

 

 

 

Section below on Problems for Houseowners and Builders when the new home is surrounded by clay and how to solve them.

 

 

 

Problems for Houseowners and Builders when the new home is surrounded clay and how to solve them.

8 problems caused by clay:-

  • In creating a new driveway for a client you can see (from the top photos) that when it rains, that the indentations in the clay caused by my boots do fill with water and then that water does not drain away.
    Solution -
    Had I installed a soakaway under the drive or elsewhere in the back garden below the drive, then it would have filled with water and not drained.
    If the ground is clay, then that soakaway will fill and never empty. In that case if you create that soakaway as a continuous one about 2 feet away from the boundary with it starting 3 feet from house and continuing round to meet the entrance of the drive, then planting privet or yew evergreen hedge in that 2 feet gap between it and the boundary will absorb the water from that driveway. The 2 feet depth of existing clay soil between that extended soakaway and the boundary should be replaced by the following mixture of 1 part existing soil and 1 part sand to provide a soil where the soakaway water can move from the soakaway through the soil to the hedge roots. The french drain used to transport the water should be surrounded by 4 inches of coarse pea-shingle inside an envelope of geotextile to stop that pea-shingle from mixing with the mixed soil.
  • The same happened to a client's house, which subsided after 6 years from being built. The builder had run out of top soil and instead of putting sand as the rest of the back garden was composed of where it had been growing a forest, they put 24 inches (60 cms) of blue clay the full width of the back of the house which sloped up and met the upward sloping lawn laid by the builders. The lawn prevented much of the rainwater from entering the sand underneath and thus draining away and ended up on the 144 inch (360 cms) wide slabbed patio before hitting the house wall and soaking into the blue clay below the slabs. Clay can absorb 40% of its own volume before it turns from a solid to a liquid. When the clay absorbs the water, then the suction on the housewall is sufficient to raise that wall. When it dries out then the wall subsides and so it subsided. The 6th photo down the Case 3a Clay on Sand Subsidence of New House Page shows the blue clay as the dark section at the top of the trench with the sand being dark yellow below it.
    Solution 1 -
    Instead of the patio sloping up the back garden, I installed a concrete foundation for a conservatory with the concrete going 12 inches (30 cms) deeper than the 24 depth of blue clay. Then, t
    he foundation for the new Path/Patio at the back of the house was sloped away from the house at 1:40 and the rain drained to the Gully, thence to the Sump in the middle of the garden. I then bought a powerful Cultivator Tiller and rotovated the back lawn. Using an asphalt rake and a spade with wheelbarrow; I then levelled the remaining back garden lawn in both directions, with the conservatory/path areas sloping away from the house to allow rainwater to be collected and taken to the sump, instead of causing further damage to the house. The levelled lawn then needed a Patio wall to stop the earth from being unsurported. A builder than built the conservatory, the restraining patio wall and the new path/patio.
    Solution 2 -
    If that area of blue clay had been surrounded by the
    Aquadyne Drainage System (details at bottom of this page) by the original builders to a 36 inches depth, then the problem would never have arisen as all the rainwater would have been transferred to the surrounding sand soil and the underlying sand. Thus the suction power of the clay would have been on the Aquadyne Drainage System and not the house wall. Since the Aquadyne Drainage System is plastic it would if it moved up and down and not taken the house wall with it.
  • There are other factors causing Subsidence of Buildings, especially Tree Roots in Clay Soils.
  • I spent some months maintaining the grounds within 5 acres of a new Care Home. The previous use for these 5 acres had been as a boys school. This had been demolished and the rubble then built on for the 5 new residential Care Buildings with its Administration/Kitchen Building. 5000 shrubs and trees were planted and at the end of the first year, I audited what remained - 2000 out those 5000 had died. The builders had generously added a 2 inches (5 cm) depth of topsoil before planting into that and the rubble under it.
    Solution -
    I bought an American Super Tomahawk Chipper/Shredder and shredded the tree/shrub prunings during the winter and applied the shreddings as a mulch in the further beds on the 5 acre estate during the winter to provide nutrients for the surviving plant.
    I did suggest putting a 4 inch mulch of bark on top of the ground in the beds at a trifling cost of £19,000, since digging up the plants and transfering them to a nursery bed, before excaving a further 12 inches (30 cm) and replacing the 14 inch (35 cm) depth with good soil mixed with manure; and then its plants; would have been extremely time consuming and expensive. This money was not forthcoming, so when I started cutting the lawns, I added the mowings to the beds as a mulch. I was told that this was unsightly and to stop doing that - at this point I resigned since the contract for the original planting only included making up the losses in the first year, I could not see that many of the plants would survive in the succeeding years.
    You need a minimum of a spade depth of at least 8 inches (20 cms) of topsoil with a 4 inch mulch of bark or spent mushroom compost surrounding each plant after the planting, plus an irrigation system - that means 12 inches below the top of the bed edging, so that the mulch does not flow out onto the lawn, patio, drive or paths after it has been laid.
  • In maintaining a client's lawn, I found that after rain that their lawn was squelchy. The lawn was laid on a clay topsoil.
    Solution-
    I mowed the lawn quite low and applied
    Top Dressing at the recommended rate. I repeated this twice more once a month. After that, the problem was sorted.
  • I received this from a client - An unsuccessful planting scheme had left bare areas of garden as plants failed to survive winter in the waterlogged clay soil. The loss of numerous plants and the cost of replacing them had left us disheartened.
    Solution -
    A
    150mm (6 inch) deep mulch of mixed peat, sharp washed sand and horticultural grit was applied on top of a heavy clay soil to improve its structure, and stop the plants therein from drowning, at £10 a square metre. The mix was:
    • 4 cubic metres of Peat (to provide the Organic Polymers/Organic Matter and Carbon.)
    • 2 cubic metres of Sharp Washed Sand (to provide the sand for the production of microaggregates)
    • 2 cubic metres of Horticultural Grit (to provide larger particles for aggregation)
    • 25kg of Garden Lime (to provide Calcium for the plants and allow clay minerals to bond together to form domains. Once clay minerals are stacked together to form domains, they can then bond with organic matter to form microaggregates)
    • 25 kg of Sulphate of Iron (to provide Iron to act as a trace element and to create soil colloid for buffering chemical nutrients in the soil for later use by plants)
    • 25Kg of Sulphate of Potash ( to provide fertilizer for the plants)

      and the following was sent to me in October 2004:- An unsuccessful planting scheme had left bare areas of garden as plants failed to survive winter in the waterlogged clay soil. The loss of numerous plants and the cost of replacing them had left us disheartened. It was evident that remedial action was needed in the form of a mixture of gravel, sand and peat to create an organic loam. Approximately six inches was added in April and left to settle and do its job. By July there was a noticeable difference in the quality of the soil and the plants. Shrubs with sparse, mottled leaves were looking glossy and robust, overall growth had increased (including the weeds!) and the soil was holding its moisture well. But the biggest difference came in the confidence it gave us to transform the garden. The borders used to be a no-go area between May and September as the clay baked and cracked, but the new soil was easy to handle and weeds could be successfully removed. We realised that there are no quick fixes - the key to a healthy garden is rich, nutritous soil. Once our plants began to thrive we were optimistic that, with good advice, we could create a garden to be proud of.
  • I visited a prospective client whose second laid lawn sloping up from the house in the back garden was needed to be replaced. The turves had dried and the clay soil had also dried with the result that the turves separated. She had had the builder lay a horizontal patio at the back of her new house and the lawn went from there up to the next house. Her home and garden were on clay. I did point out to her that when it rained, then the patio would become a lake and her house would subside, since not only the rain falling on the patio but the rain falling on the lawn would also end up at the patio. I refused to quote for her lawn replacement.
    Solution -
    in next row.
  • When requested by a builder, I visited his site where huge excavators were used to dig the trenches for the drains and utilities. The garden at the back of the showhouse had a downward slope from the garden wall to the house and moss was already growing round the french windows facing the back garden.
    Solution -
    in next Row.

     

 

Builders do sell the original topsoil including

  • the grass,
  • the zone of organic matter and the
  • zone where mineral and organic matter are mixed

where the new building and its garden areas are to be built.

soil11casestudies

The consolidated parent material (bedrock) is usually sand, chalk or clay with flint possibly. At the end of building; the builders rubble is covered with possibly only a 2 inch (5 cms) depth of imported topsoil, which might be the washings from the sugar beet in the sugar industry. This is covered with turf and the unsuspecting public is offered the result. As likely as not one of their gardens slopes towards the house and even with the modern depth of foundation wall, there is no guarantee that subsidence will not occur.

 

If every garden of a new house had a 12 inch depth of soil removed from its new garden area, then at the end of the building work, the Aquadyne Drainage System would be laid round the entire boundary. Next to it then plant the relevant Instant Hedge on the non-house wall sides to absorb the rainwater collected by that drainage system

soil15casestudies

The mix to change clay soil into a friable useful soil in less than 4 months for the above domestic garden problem was in royal blue colour typing. Using the burgundy colour typing components, the builder could create the following soil mix for his gardens:

  • 4 cubic metres of Peat (to provide the Organic Polymers/Organic Matter and Carbon.)
  • 2 cubic metres of Sharp Washed Sand (to provide the sand for the production of microaggregates).
  • 2 cubic metres of Horticultural Grit (to provide larger particles for aggregation)
    752,000 tons of glass are now recycled annually in the UK. Crushed glass (cullet) is used in Agriculture and landscape applications, such as top dressing, root zone material or golf bunker sand, so builders could replace the Sharp washed Sand and the Horticultural Grit with cullet.
  • 25kg of Garden Lime (to provide Calcium for the plants and allow clay minerals to bond together to form domains. Once clay minerals are stacked together to form domains, they can then bond with organic matter to form microaggregates).
    Poultry litter -
    Uric acid and organic nitrogen (N) in the bird excreta and spilled feed are converted to ammonium (NH4+) by the microbes in the litter. Ammonium, a plant-available N form, can bind to litter and also dissolve in water. Ammonium is a highly reactive ion that bonds with sulfates, nitrates and phosphates to form ammonium salts that improve the nutrient value of litter when land applied as fertilizer.
    Plasterboard (is gypsum - Calcium sulfate dihydrate normally pressed between a paper facer and backer)
    wastage in the UK is estimated to be 300,0000 tonnes per year
    . Builders could replace the Garden Lime with the reaction of the poultry litter on the gypsum.
    The recommendations stated in the RHS article are for the finely ground garden lime (calcium carbonate) sold in garden centres in kilograms (kg) per square metre or ounces per square yard. They are based on the Department for Environment, Food and Rural Affairs (DEFRA) recommendations for incorporation into the top 20cm (8in) of soil and are enough to raise the soil pH to pH6.5. This is considered the best all-round pH for the majority of garden plants.
  • 25 kg of Sulphate of Iron (to provide Iron to act as a trace element and to create soil colloid for buffering chemical nutrients in the soil for later use by plants)
  • 25Kg of Sulphate of Potash ( to provide fertilizer for the plants)

If water with 150 kgs of clay was first added to the Concrete TruckMixer and then the required volume of cullet followed by the required volume of waste plasterboard, the mixture is then mixed for an hour. If the cullet/waste plasterboard mixture is passed through the poultry houses to mix with the poultry litter on the litter floor before being collected into the next Concrete TruckMixer, then the houses would be cleaner and smell less. The required volume of waste from beer making could replace the Peat above and the requisite Sulphate of Iron and Sulphate of Potash could be added to the Concrete TruckMixer before that mixture from the Poultry Farm litter floor is added.

That soil mixture could then be mixed for 30 minutes before applying it to the garden areas of the new houses built by the builder to an 11 inch (27.5 cms) depth. The resulting mixture would then integrate with the clay and create a deep topsoil within 3 months.

All the requirements for a soil as shown in the figure above would then have mixed together and time will increase the bacteria and get a new soil structure created.

The following type of turf could then be laid over the proposed lawn areas a fortnight later:-

RTF (Rhizomatous Tall Fescue), bred by Barenbrug Research USA, produces rhizomes (an underground stem) that send a shoot up to the soil surface while extending new roots downwards. In fact, RTF can root to 1.5 metres deep giving it a chance to tap into water reserves that normal lawn turf cannot reach.
Because RTF is suited to almost all soil types and needs little maintenance and minimal irrigation, gardeners will be rewarded with beautiful lawns, rich in colour and disease resistant, not only in the summer but all year round. During the winter months, the lawn will hold its lush green colour and can resist frost and darker corners. With the onset of spring the rapid germination and quick spring green-up means that lawns are greener earlier.

 

 

 

Section below on Plant Selection Methods

 

 

Choose 1 of these different Plant selection Methods:-

 

1. Choose a plant from 1 of 53 flower colours in the Colour Wheel Gallery.

 

2. Choose a plant from 1 of 12 flower colours in each month of the year from 12 Bloom Colours per Month Index Gallery.

 

3. Choose a plant from 1 of 6 flower colours per month for each type of plant:-

Aquatic
Bedding
Bulb
Climber
Conifer
Deciduous Shrub
Deciduous Tree
Evergreen Perennial
Evergreen Shrub
Evergreen Tree
Hedging
Herbaceous Perennial
Herb
Odds and Sods
Rhododendron
Rose
Soft Fruit
Top Fruit
Wild Flower

 

4. Choose a plant from its Flower Shape:-

Shape, Form
Index

Flower Shape

 

5. Choose a plant from its foliage:-

Bamboo
Conifer
Fern
Grass
Vegetable

 

6. There are 6 Plant Selection Levels including Bee Pollinated Plants for Hay Fever Sufferers in
Plants Topic.

 

or

 

7. when I do not have my own or ones from mail-order nursery photos , then from March 2016, if you want to start from the uppermost design levels through to your choice of cultivated and wildflower plants to change your Plant Selection Process then use the following galleries:-

  • Create and input all plants known by Amateur Gardening inserted into their Sanders' Encyclopaedia from their edition published in 1960 (originally published by them in 1895) into these
    • Stage 1 - Garden Style Index Gallery,
      then
    • Stage 2 - Infill Plants Index Gallery being the only gallery from these 7 with photos (from Wikimedia Commons) ,
      then
    • Stage 3 - All Plants Index Gallery with each plant species in its own Plant Type Page followed by choice from Stage 4a, 4b, 4c and/or 4d REMEMBERING THE CONSTRAINTS ON THE SELECTION FROM THE CHOICES MADE IN STAGES 1 AND 2
    • Stage 4a - 12 Bloom Colours per Month Index Gallery,
    • Stage 4b - 12 Foliage Colours per Month Index Gallery with
    • Stage 4c - Cultivation, Position, Use Index Gallery and
    • Stage 4d - Shape, Form Index Gallery
    • Unfortunately, if you want to have 100's of choices on selection of plants from 1000's of 1200 pixels wide by up to 16,300 pixels in length webpages, which you can jump to from almost any of the pages in these 7 galleries above, you have to put up with those links to those choices being on
      • the left topic menu table,
      • the header of the middle data table and on
      • the page/index menu table on the right of every page of those galleries.

There are other pages on Plants which bloom in each month of the year in this website:-

 

 

PLANTS PAGE
MENU
Introduction
Site Map
 

PLANT USE
Plant Selection
Level 1
Attracts Bird/Butterfly
Photos - Butterfly

Bee Pollinated Plants for Hay Fever Sufferers
Photos - Bloom per Month

Groundcover Height
0-24 inches
(0-60 cms
)
24-72 inches
(60-180 cms
)
Above 72 inches
(180 cms
)
 

Poisonous Cultivated and UK Wildflower Plants with Photos
or
Cultivated Poisonous Plants
or
Wildflower Poisonous Plants


Rabbit-Resistant Plant
Flower Arranging
Wildflower
Photos - Wildflowers

 


PLANTS FOR SOIL
Plant Selection
Level 2
Info - Any Soil
Plants - Any Soil A-F
Plants - Any Soil G-L
Plants - Any Soil M-R
Plants - Any Soil S-Z

Info - Chalky Soil
Plants - Chalk Soil A-F
Plants - Chalk Soil G-L
Plants - Chalk Soil M-R
Plants - Chalk Soil S-Z

Info - Clay Soil
Plants - Clay Soil A-F
Plants - Clay Soil G-L
Plants - Clay Soil M-R
Plants - Clay Soil S-Z

Info - Lime-Free Soil
Plants - Lime-Free Soil A-F
Plants - Lime-Free Soil G-L
Plants - Lime-Free Soil M-R
Plants - Lime-Free Soil S-Z

Info - Sandy Soil
Plants - Sand Soil A-F
Plants - Sand Soil G-L
Plants - Sand Soil M-R
Plants - Sand Soil S-Z

Info - Peaty Soils
Plants - Peaty Soil A-F
Plants - Peaty Soil G-L
Plants - Peaty Soil M-R
Plants - Peaty Soil S-Z

Following parts of Level 2a,
Level 2b,
Level 2c and
Level 2d are included in separate columns
together with
Acid Soil,
Alkaline Soil,
Any Soil
,
Height and Spread,
Flowering Months and
Flower Colour in their Columns,
and also
Companion Plants to aid this plant Page,
Alpine Plant for Rock Garden Index Page
Native to UK WildFlower Plant in its Family Page in this website

and/or
Level 2cc
in the Comment Column
within each
of the Soil Type Pages of
Level 2

PLANTS PAGE MENU

 


Plant Selection by Plant Requirements
Level 2a
Sun aspect, Moisture


Plant Selection by Form
Level 2b
Tree Growth Shape
Shrub/Perennial Growth Habit


Plant Selection by Garden Use
Level 2c
Bedding
Photos - Bedding
Bog Garden
Coastal Conditions
Containers in Garden
Front of Border
Hanging Basket
Hedge
Photos - Hedging
Pollution Barrier
Rest of Border
Rock Garden
Photos - Rock Garden
Thorny Hedge
Windbreak
Woodland


Plant Selection by Garden Use
Level 2cc Others
Aquatic
Back of Shady Border
Crevice Garden
Desert Garden
Raised Bed
Scree Bed
Specimen Plant
Trees for Lawns
Trees for Small Garden
Wildflower
Photos - Wildflowers


Plant Selection by Plant Type
Level 2d
Alpine
Photos - Evergr Per
Photos - Herbac Per
Photos - RHS Herbac
Photos - Rock Garden
Annual
Bamboo
Photos - Bamboo
Biennial
Bulb
Photos - Bulb
Climber
Photos - Climber
Conifer
Deciduous Rhizome
Deciduous Shrub
Photos - Decid Shrub
Evergreen Perennial
Photos - Evergr Per
Evergreen Shrub
Photos - Evergr Shrub
Fern
Photos - Fern
Fruit Plant
Grass
Herb
Herbaceous Perennial
Photos - Herbac Per
Remaining Top Fruit
Soft Fruit
Sub-Shrub
Top Fruit
Tuber
Vegetable
Photos - Vegetable

PLANTS PAGE MENU

 


REFINING SELECTION
Plant Selection by
Flower Colour
Level 3a
Blue Flowers
Photos - Bedding
Photos - Bulb
Photos - Climber
Photos - Evergr Per
Photos - Evergr Shrub
Photos - Wild Flower

Orange Flowers
Photos - Bedding
Photos - Wild Flower

Other Colour Flowers
Photos - Bedding
Photos - Bulb
Photos - Climber
Photos - Evergr Per
Photos - Evergr Shrub
Photos - Wild Flower

Red Flowers
Photos - Bedding
Photos - Bulb
Photos - Climber
Photos - Decid Shrub
Photos - Evergr Per
Photos - Evergr Shrub
Photos - Herbac Per
Photos - Rose
Photos - Wild Flower

White Flowers
Photos - Bedding
Photos - Bulb
Photos - Climber
Photos - Decid Shrub
Photos - Decid Tree
Photos - Evergr Per
Photos - Evergr Shrub
Photos - Herbac Per
Photos - Rose
Photos - Wild Flower

Yellow Flowers
Photos - Bedding
Photos - Bulb
Photos - Climber
Photos - Decid Shrub
Photos - Evergr Per
Photos - Evergr Shrub
Photos - Herbac Per
Photos - Rose
Photos - Wild Flower


Photos - 53 Colours in its Colour Wheel Gallery

Photos - 12 Flower Colours per Month in its Bloom Colour Wheel Gallery


Plant Selection by Flower Shape
Level 3b
Photos - Bedding
Photos - Evergr Per
Photos - Herbac Per


Plant Selection by Foliage Colour
Level 3c
Aromatic Foliage
Finely Cut Leaves
Large Leaves
Other
Non-Green Foliage 1
Non-Green Foliage 2
Sword-shaped Leaves

 


PRUNING
Plant Selection by Pruning Requirements
Level 4
Pruning Plants

 


GROUNDCOVER PLANT DETAIL
Plant Selection Level 5
Plant Name - A
Plant Name - B
Plant Name - C
Plant Name - D
Plant Name - E
Plant Name - F
Plant Name - G
Plant Name - H
Plant Name - I
Plant Name - J
Plant Name - K
Plant Name - L
Plant Name - M
Plant Name - N
Plant Name - O
Plant Name - P
Plant Name - Q
Plant Name - R
Plant Name - S
Plant Name - T
Plant Name - U
Plant Name - V
Plant Name - W
Plant Name - XYZ

 


Then, finally use
COMPANION PLANTING to
aid your plant selected or to
deter Pests
Plant Selection Level 6

 

To locate mail-order nursery for plants from the UK in this gallery try using search in RHS Find a Plant.

To locate plants in the European Union (EU) try using Search Term in Gardens4You and Meilland Richardier in France.

To locate mail-order nursery for plants from America in this gallery try using search in Plant Lust.

To locate plant information in Australia try using Plant Finder in Gardening Australia.

 

Section below provides details about flowers

 

 

 

The following details come from Cactus Art:-

"A flower is the the complex sexual reproductive structure of Angiosperms, typically consisting of an axis bearing perianth parts, androecium (male) and gynoecium (female).    

Bisexual flower show four distinctive parts arranged in rings inside each other which are technically modified leaves: Sepal, petal, stamen & pistil. This flower is referred to as complete (with all four parts) and perfect (with "male" stamens and "female" pistil). The ovary ripens into a fruit and the ovules inside develop into seeds.

Incomplete flowers are lacking one or more of the four main parts. Imperfect (unisexual) flowers contain a pistil or stamens, but not both. The colourful parts of a flower and its scent attract pollinators and guide them to the nectary, usually at the base of the flower tube.

partsofaflowersmallest1a

 

Androecium (male Parts or stamens)
It is made up of the filament and anther, it is the pollen producing part of the plant.
Anther This is the part of the stamen that produces and contains pollen. 
Filament This is the fine hair-like stalk that the anther sits on top of.
Pollen This is the dust-like male reproductive cell of flowering plants.

Gynoecium (female Parts or carpels or pistil)
 It is made up of the stigma, style, and ovary. Each pistil is constructed of one to many rolled leaflike structures. Stigma This is the part of the pistil  which receives the pollen grains and on which they germinate. 
Style This is the long stalk that the stigma sits on top of. 
Ovary The part of the plant that contains the ovules. 
Ovule The part of the ovary that becomes the seeds. 

Petal 
The colorful, often bright part of the flower (corolla). 
Sepal 
The parts that look like little green leaves that cover the outside of a flower bud (calix). 
(Undifferentiated "Perianth segment" that are not clearly differentiated into sepals and petals, take the names of tepals.)"

 

 

 

The following details come from Nectary Genomics:-

"NECTAR. Many flowering plants attract potential pollinators by offering a reward of floral nectar. The primary solutes found in most nectars are varying ratios of sucrose, glucose and fructose, which can range from as little a 8% (w/w) in some species to as high as 80% in others. This abundance of simple sugars has resulted in the general perception that nectar consists of little more than sugar-water; however, numerous studies indicate that it is actually a complex mixture of components. Additional compounds found in a variety of nectars include other sugars, all 20 standard amino acids, phenolics, alkaloids, flavonoids, terpenes, vitamins, organic acids, oils, free fatty acids, metal ions and proteins.

NECTARIES. An organ known as the floral nectary is responsible for producing the complex mixture of compounds found in nectar. Nectaries can occur in different areas of flowers, and often take on diverse forms in different species, even to the point of being used for taxonomic purposes. Nectaries undergo remarkable morphological and metabolic changes during the course of floral development. For example, it is known that pre-secretory nectaries in a number of species accumulate large amounts of starch, which is followed by a rapid degradation of amyloplast granules just prior to anthesis and nectar secretion. These sugars presumably serve as a source of nectar carbohydrate.

WHY STUDY NECTAR? Nearly one-third of all worldwide crops are dependent on animals to achieve efficient pollination. In addition, U.S. pollinator-dependent crops have been estimated to have an annual value of up to $15 billion. Many crop species are largely self-incompatible (not self-fertile) and almost entirely on animal pollinators to achieve full fecundity; poor pollinator visitation has been reported to reduce yields of certain species by up to 50%."

 

The following details about DOUBLE FLOWERS comes from Wikipedia:-

"Double-flowered" describes varieties of flowers with extra petals, often containing flowers within flowers. The double-flowered trait is often noted alongside the scientific name with the abbreviation fl. pl. (flore pleno, a Latin ablative form meaning "with full flower"). The first abnormality to be documented in flowers, double flowers are popular varieties of many commercial flower types, including roses, camellias and carnations. In some double-flowered varieties all of the reproductive organs are converted to petals — as a result, they are sexually sterile and must be propagated through cuttings. Many double-flowered plants have little wildlife value as access to the nectaries is typically blocked by the mutation.

 

There is further photographic, diagramatic and text about Double Flowers from an education department - dept.ca.uky.edu - in the University of Kentucky in America.

 

"Meet the plant hunter obsessed with double-flowering blooms" - an article from The Telegraph.

 

 

 

 

Ivydene Gardens Case Studies:
Case 3b - Pre-Building Work for Builders with Polluted Soil.

 

 

Following my reading of the article
Contaminated City Wastelands to Futuristic Urban Parklands on Page 19 of Contractors World in November 2009
on

"London 2012 Olympic Games was the largest contaminated brownfield site in any capital city, the legacy of an industrial past. The Olympic Games will bring prosperity through urban renewal to a derelict wasteland that has laid dormant for many years, although just a few kilometres from the heart of London, being too expensive to clean up for normal redevelopment.",

I was considering a different approach.

Builders buy land to build on and keep it in their Land Bank until required. Perhaps once they had bought it, then the following might occur:-

  • Assess the toxicity of the site and what it is.
  • Build up an Aquadyne Drainage System grid to drain the water, and place plastic boxes next to the Aquadyne Drains that can be replaced by the phyto-remediation plants a month later; and then immediately pour the soil mixture created for the builders as shown on the right hand table onto the ground within the rectangles of the Aquadyne Drainage System.
  • Using the information about what phyto-remediation plants will deal with that toxin on that site (See following article in next row), then grow or buy those phyto-remediation plants and plant them a month later alongside the Aquadyne Drainage System or sow the relevant seed on the soil mixture created for the builders within the Aquadyne Drainage System Grid.
  • Leave the site for 6 months or the recommended time for those plants to reduce toxity to levels safe for humans.
  • Before starting building work, remove the relevant section of soil and Aquadyne Drainage System and then build the houses. Then the suggested plan for Builders detailed in the right hand table could be followed for the new garden areas.

 

 

USING PLANTS TO CLEAN CONTAMINATED SOIL

By Brian Kaller, originally published by Restoring Mayberry

August 11, 2014

In the last couple of centuries humans have done a strange thing: we’ve dug the biggest pits, the deepest holes, and the longest tunnels the world has ever seen, all to find the most insidious and subtle poisons known to our mammalian bodies, remove them from deep inside rocks where they had lain sequestered for eons, and concentrate them in the places where most of us live. We’re starting to think this maybe wasn’t a good idea.

Take lead, which last- century humans put into containers, car parts, pipes, paints and many other products — and even in petroleum, spreading lead-tainted exhaust across a world. Lead causes brain damage and erratic behaviour if absorbed into the human body, and its rise and fall correlates with the US crime rate in the 20th century – the more lead was around children, the more crime appeared a generation later. It’s been banned from paints and auto fuel, of course, but it lingers on old buildings and in soil.

Or take mercury: burning coal releases it into air and water, and thence into animals like fish – a  2009 study by the US Geological Survey tested 300 streams across the USA and found that every fish tested contained mercury, a quarter at unsafe levels.

You could go on with a list of such heavy metals – cadmium, zinc, copper – right down the periodic table. Most of all, we have pulled out coal and oil and used it not just to fuel up the car and turn on the lights, but to generate hundreds of thousands of petrochemicals with unpronounceable names as long as sentences and often-unpleasant effects.

I say “we,” of course, but this isn’t a guilt trip; most of this was before your time, and you didn’t vote for it anyway. You and I use small amounts of heavy metals and fossil fuels in our own lives – driving, flying, heating, buying plastic products, just looking at this on a computer – but it’s very difficult to avoid doing so and still living in the modern world.

The consequence of so many people doing so many of these things, though, is that any urban area — and many rural ones – will have splotches on the map with large quantities of toxic materials in the ground. If you live where a gasoline station used to be, or a factory, a garbage dump, or any number of other things, you might have things in your soil you don’t want in your stroganoff.

If you think you just won’t live in places, or just move away from them, congratulations: you’re thinking the same thing as everyone else. That presents a problem, as everyone who can live somewhere else will do so, and everyone who can’t live somewhere else will live on contaminated sites. Realistically, this means the poor, the elderly and other vulnerable people have to live with everyone else’s toxic waste – which is often the case already.

Other methods, like removing tonnes of contaminated soil, involve years of work and vast sums of money we don’t have anymore. If you could remove all the affected soil, moreover, where would you put it, aside from somewhere else that would then be contaminated?

What we need is a device that can suck toxins out of the soil and either turn them into something harmless, or concentrate them in something lightweight and removable. No one has much money lying around to invent such a device, though, much less to manufacture millions of them and send them to sites around the world for free. Thus, these hypothetical devices would be even better if they already appeared around the world.

It would be best, in fact, if these machines cost nothing to create, and once created could make more of themselves, at an exponential rate. While we’re at it, it would also be nice if the devices also prevented soil erosion, fed bees and other pollinators, and provided shade, beauty, a home for wildlife, and possibly firewood.

Thankfully, we have these machines now. Certain plants, it turns out, have a particular gift for sucking up specific chemicals, either as a quirk of their biology or as a way to make themselves poisonous and avoid being eaten. When these plants are sown on contaminated ground, they absorb the contaminants into their tissues, gradually reducing the amount in the soil until it is safe for humans.

Called phyto-remediation, this process has become one of the newest and most promising fields of biology. Similar methods use mushrooms in what is called myco-remediation, or use bacteria and have unfortunate names like bio-sparging, bio-slurping and bio-venting, but we’ll restrict ourselves here to plants.

The basic method is straightforward: find out what toxins lurk in your patch of ground, and come up with a regimen of plants appropriate for the climate that hyper-accumulate those particular toxins.

“Toxins,” of course, covers a lot of ground, and the vagueness of the word allows it to be used in all kinds of unproductive ways – for example, every fake New Age cure that claims to rid your body of unspecified “toxins.” So to get more specific, let’s separate toxins into two of the most common categories: metals and petrochemicals.

Petrochemicals generally have familiar atoms like carbon, hydrogen and oxygen, the same things that make up chocolate sundaes, flower gardens, testosterone, newspaper, and most of the world around us. Those same elements in different combinations, however, make common but un-tasty compounds like gasoline, or lethal poisons like Agent Orange — it’s all in how many atoms are put together in what arrangement.

If a plant can absorb, let’s say, the cancer-causing benzo-pyrene – C20H12, found in coal tar – with some oxygen (O) and then separate it into C12H22O11 and H2O, the petroleum-based poison would become sugar water. I’m not saying this is the actual chemical process, by the way – just an example of how chemical combinations can make something deadly or delicious.

When the toxins are metals, of course, they cannot be broken down into other elements any more than lead could be changed to gold. Some plants can absorb the metal and metabolise it into some kind of molecule, however, making it less easy to be absorbed by the human body and thus safer to be around. Sometimes the metals can even help us; some biologists have even proposed using certain edible plants to accumulate zinc from contaminated soils and feeding the plants to people with a zinc deficiency.

After the plants are harvested with the metals concentrated in their tissues, they can be burned, and the metal stays in the ash – a small amount of space and weight to dispose of, compared to the tonnes of contaminated earth. The ash might even be able to be mined for the metals, for complete recycling.

One example comes from Brazil, where abandoned gold mines are leaking mercury and other heavy metals into the soil and water. Mercury is one of the most toxic of heavy metals, and once in the soil it is soaked up by grass, which is eaten by cows, which are eaten by … you get the idea. Farmers are now growing maize and canola plants in the area, though, which soak up heavy metals quite nicely – gold as well as mercury. One scientists overseeing the project estimated farmers could get a kilogram of gold per hectare from doing this, which would help pay for the clean-up.

Mustard greens were used to remove 45% of the excess lead from a yard in Boston to ensure the safety of children who play there. Pumpkin vines were used to clean up an old Magic Marker factory site in Trenton, New Jersey, while Alpine pennycress helped clean up abandoned mines in Britain. Hydroponically grown sunflowers were used to absorb radioactive metals near the Chernobyl nuclear site in the Ukraine as well as a uranium plant in Ohio.

Blue Sheep fescue helps clean up lead, as do water ferns and members of the cabbage family. Smooth water hyssop takes up copper and mercury, while water hyacinths suck up mercury, lead, cadmium, zinc, cesium, strontium-90, uranium and various pesticides. Sunflowers slurp a wide range of compounds – not just the uranium and strontium-90 from radioactive sites, but also cesium, methyl bromide and many more. Bladder campion accumulates zinc and copper, while Indian mustard greens concentrate selenium, sulphur, lead, chromium, cadmium, nickel, zinc, and copper.

Perhaps the most magnificent hyperaccumulator, though, is the simple willow tree, Salix viminalis; it slurps up copper, zinc, cadmium, selenium, silver, chromium, uranium, petrochemicals and many others. Also, once its bio-mass has concentrated the heavy metals, it can be harvested and used for many practical things.

Of course, phytoremediation operates under certain limitations; the plants have to be able to grow in that climate, and should not be an invasive species that will take over the landscape, as kudzu did in the American South. The plants can only remove toxins as deep as their roots, so the technique might not solve groundwater contamination.

Most importantly, plants move at a different speed than we do, and even after the plants are harvested they are not likely to have eliminated the toxin. Reducing a toxin to safe levels takes time, and phytoremediation doesn’t remove a problem overnight.

Perhaps the most appealing aspect of this new field, though, is its scale, that the work to clean up toxic-waste sites could be done with no massive government project or corporate funding, with no bulldozers or construction equipment, without advanced and delicate technology beyond that to measure the toxin levels. The principles could be taught to every schoolchild or practiced by every land-owner, so that if anyone detects a certain toxin on their property, they will know what to plant to gradually remove it. The seeds and plants could be sold by any gardening or farm-supply store, so that some of our society’s most grandiose mistakes can be fixed by ordinary people, using natural means, using home-made experiments, hard work and patience, to restore our land to what it once was.

 

Thanks to Dr. David Leung of the University of Canterbury, New Zealand for his assistance in checking this article.      

Survey of US streams: “Mercury Found in Every Fish Tested, Scientists Say,” New York Times, August 19, 2009.

Effects of lead on crime: “America’s Real Criminal Element: Lead,” Mother Jones magazine, January 2013

Effects of lead on crime: “How Lead Exposure Relates to Temporal Changes in IQ, Violent Crime, and Unwed Pregnancy,” Rick Nevin, Environmental Research, Volume 83, Issue 1, May 2000, Pages 1-22.

Effects of lead on crime: “Hazards of heavy metal contamination,” British Medical Bulletin, Volume 68, Issue 1, p. 167-182

Phytoremedation: Recent Advances Toward Improved Phytoremediation of Heavy Metal Pollution, Bentham Books, 2013.

Gold mines and mercury: Phytoremediation of Mercury-Contaminated Mine Wastes, Fabio Netto Moreno, Massey University 2004.

Playground in Boston: “New Jersey company cultivates pollution-eating plants Mustard greens, alfalfa help to clean up ravages of industry,” Baltimore Sun, March 30. 1997.

Playground in Boston: Blaylock, M.J., S. Dushenkov, D. Page, G. Montes, D. Vasudev, and Y. Kapulnik. Phytoremediation of a Pb-contaminated brownfield site in New Jersey. (1996), pp. 497-498. In Emerging Technologies in Hazardous Waste Management VIII, 1996 Extended Abstracts for the Special Symposium, Birmingham, Alabama, Industrial & Engineering Chemistry Division, American Chemical Society, September 9-11, 1996.

Blue Sheep Fescue: Phytoremediation: A Green Technology to Remove Environmental Pollutants, p. 71 – 86, American Journal of Climate Change 2013.

“Metal armour protects plants from disease,” Planet Earth Online, 10 September 2010.

“Improving Plants for Zinc Acquisition,” Prachy Dixit and Susan Eapen, Bioremediation Technology: Recent Advances, M. H. Fulekar, Springer, 2010.

Bio-remediation and Bio-fortification: Two Sides of One Coin, by X. Yin and L. Yuan, Springer 2012.

 

Some other details about builders requirements for infrastructure to support the future owners of their newly built properties:-

  • Schools are full in Rainham, Medway. Since local authorities are strapped for cash to build new schools, then maybe central government will give money to expand each relevant school with new classrooms using school playing fields that have not already been sold off. You will also need a larger budget for the school and more personnel as teachers, cleaners, etc. We need new schools not expanded old ones.
  • Shortage of Doctors for existing patients; culminating in the number of unfilled GP posts quadrupling in the past 3 years (Report 2 March 2015).
  • Dentist shortage - lack of access has prevented 1 in 6 people from seeing an NHS dentist for almost 2 years, a poll suggests (Report 16 January 2008).
  • Mains and Sewer pipes are old and small diameter in Otterham Quay Lane - the added effluent would either overload the drain and/or overload the waste treatment centre; or its pump to get the waste to it. This development would have to have all waste water, including rainwater pumped into the public drain which is above the whole site. If it overflowed, then it would end up in the railway cutting for the main railway line from London to Dover.
  • Water Supply. Have we enough water in the South East? We take some of our water from chalk aquifers, where the Western Chalk (Medway) area is over abstracted, which is where I live. No, we do not have excess water for this new development - during the dry spring in 2010, those without winter storage reservoirs, did not have enough water in agriculture - livestock numbers became unsustainable due to lack of green grass, etc.
    India also takes water from the ground by its farmers and its water table has sunk very dramatically causing a crisis.
  • Access to village hall with access to external play areas to help build a community in your estate.
  • Providing dog walking facilities - have a 96 inch width area round the edge of the estate with native wildflower shrubs and perennials with ivy on the fence/wall either side of this area. Have a grass path installed in Cedagravel® instead of peashingle, which meanders between the evergreen/ deciduous shrubs. This can be used to walk the dog or to simply have a walk.
    This area can also be used as a Wildlife Corridor to allow wild animals to move to another location. I erected a very strong wooden fence flush to the ground. Within a month my local fox made excavations under it so that he/she could get across the garden and leave to next door at the end of the garden by the garage; whenever it was required.
  • Access to Small local shops within 10 minutes walking to help build a community in your estate. Perhaps one could be alongside the village hall as well.
  • Improve road access. There are 3 roads that run east to west through Medway
    - the Motorway M2,
    the main road through the middle - the A2 and
    the Lower Rainham Road links to the Medway Tunnel. When I worked in the central area of the town, I found it faster to go up to the Motorway, along it and down to my work than to go straight there via the multiple sets of traffic lights on the A2. With the build up of the traffic outside my house in the morning, when I can walk 800 metres into Rainham faster than the traffic, there are 2 possibilities:-
    1. The traffic lights by Mierscourt Lane and the A2 holds up traffic. The lights are too close to the T junction making it an extremely tight turn for buses, coaches or lorries and if those were pulled back by at least 96 inches, then it would be easier for those drivers. The pavements on each side of the A2 are wider than 36 inches (40 cms) - if they were reduced to 36 inches then, the traffic turning right from the A2 to Mierscourt Lane could have their own turning lane and the remaining traffic could pass them on the inside, instead of being held up by the 2 vehicles in front who are to turn right and are waiting until they can.
    2. There is a single road on the Lower Rainham Road with chicanes and speed humps to slow one down to 20 mph. This causes traffic jams. If that was turned into a 1 way road and another road built from the roundabout on Otterham Quay Lane to a new roundabout by the Riverside Country Park for the other 1 way road closer to River Medway, then both the M2 and that new road system would greatly improve traffic flow.
    3. If the single track width roads of Seymour Road and the other going from Otterham Quay Lane to the Gold Course could be widened into a single road width, then the drivers of the vehicles in the new housing estates could use those to get to the Lower Rainham Road or out to the A2 to get to Sittingbourne.
  • The local authority knows how many pupils attend each type of school and their ages. Therefore the school construction cost for each pupil can be calculated and the number of children of different ages likely to be in the new dwellings calculated and the builders charged for that cost. The same goes for the remainder of the infrastructure and then that money can be used by the local authority to provide those facilities within 3 years.

The following is our letter to the local authority about an application for 200 houses to be built in a field opposite our conservation area (one of the remits of this conservation area is because it was a small village in the countryside):-

 

1 Eastmooor Farm Cottages

Moor Street

Rainham

Kent ME8 8QE

01634 780675

janet@ivydenegardens.co.uk

 

9th July 2015

 

Dear Sirs,

 

Re development to the north of Moor Street – appeal against the refusal of planning permission

Appeals Ref: APP/A2280/W/15/3012034

 

I am writing to object to the appeal by Gladman’s Builders against the refusal by Medway Council to grant planning permission for a development of 200 houses to the north of Moor Street. This matter should be considered in conjunction with another application being made by Persimmon, to build 300 homes on adjacent land, because access to all of these dwellings will be onto Otterham Quay Lane. Note should also be taken of the granting of permission by Swale Borough Council for 50 dwellings to be build on 4 Gun Field, which will also rely upon Otterham Quay Lane for access.

We live to the south of Moor Street within the conservation area and have significant concerns about all of the proposed development.

The first issue is the availability of services such as education and doctors surgeries. It is reasonable to suppose that a fair proportion of the houses will have school age children living in them, particularly given the inclusion of social housing. Whilst there are 7 primary schools within Medway and one in Swale within 1.5 miles of both sites, it is unlikely that they have capacity to take more children; 5 are already oversubscribed and one is within Swale, meaning that Medway children are unlikely to be admitted. No consideration seems to have been given to whether additional classrooms could be added to existing schools, even if those schools were willing to be expanded. The same concern applies to provision of school places for older children.

I note that the surgeries at Rainham Healthy living centre are accepting new patients. One of those surgeries already has a very low rating (51.9%) from patients regarding the making of appointments and another is only 75% for the same category, although the rating for clinical care is much higher. Increasing the population by hundreds of people is only going to make matters worse, at a time when there is a national shortage of GP’s. Before planning permission is given, checks must be made that all potential residents could register with a GP who can offer an appropriate service, including home visits if necessary.

Our local hospital, Medway Maritime is already in special measures and its recovery plan suggests it will be 5 years before services will be satisfactory in all areas. More homes will mean a greater demand upon hospital services, which will impact adversely on both current residents of Medway and medical staff.

The impact assessment from Gladmans upon the road system bears no relation to reality when compared to the experience of current residents. From about 7:45 am to 9 am on weekdays, traffic is regularly backed up from the traffic lights at the junction between the A2 and Otterham Quay Lane well past our house and past the lights, it crawls along to the junction with Mierscourt Road. Once traffic gets onto the A2, progress for those wanting to travel towards Sittingbourne will be reasonable, but for those who need to go to Maidstone or London, progress is already slow. Mierscourt Road is the main feeder for Maidstone, but is a semi-rural road, busy already and which will be adversely affected by the cars from so many new homes.

People trying to get to the Medway Tunnel in order to travel towards Gravesend or London may choose to use the Lower Rainham Road. However, this is a country lane, restricted to 20 mph for much of its length, so here too, they will encounter hold ups and heavy traffic. The A2, which will give access to other areas of Medway is heavily congested now during much of the day and particularly so during peak periods. Looking at the existing development at the bottom of Otterham Quay Lane, most houses seem to have at least two cars, so it is reasonable to suppose that the proposed development will too and thus the increase in traffic overall will be significant.

The proposal is that access will be onto Otterham Quay lane, which is currently a semi rural road with a pavement on one side only, but which is used as a cut through from the Lower Rainham Road to the A2 and is busy at peak periods. The additional traffic joining the Lane from the new site would do so to the south of the railway bridge, which is blind when approaching from the north. This creates an obvious danger as cars from the development would be stationary at the traffic lights. Add in the possible additional traffic from the Persimmon development and 4 Gun Field and there will be standing traffic along the length of the Lane during all peak periods. This will be inconvenient of all road users and will massively increase the noise and air pollution. It is interesting to note that Persimmon’s concede that the noise for their homes will be such that opening windows for ventilation for those closest to the road will be impractical. As the majority of the traffic will come up towards the A2 and past the Gladman’s development, it is inevitable that the same thing will apply to them, but this is not acknowledged by Gladman.

The junction between Otterham Quay Lane, Miersborough Lane and Moor Street is difficult already and increasing the volume of traffic from the proposed development will make it very much worse. It is particularly hazardous for pedestrians, who currently have to take their chances. When crossing the A2 from either side of the junction and either side of the road, it is impossible to see into Otterham Quay Lane, so if traffic is stationary at a red light on the A2, it is likely to be exiting OQL and turning into one’s path. The same hazard exists when crossing OQL, in that one cannot see sufficiently far onto the A2 to tell if vehicles are coming round the corner. This issue is of particular relevance when taken in conjunction with the provision of public transport.

For new residents wishing to travel by train, there is indeed a good service both up and down (although I have yet to meet anyone who commutes to Exeter from here, as mentioned in Gladmans documentation). The difficulty they will face is in walking to the station, because they will have to cross Otterham Quay Lane, whichever route they take. If they take the shortest, using Wakeley Road, they will have to cross the railway bridge, which only has a path on the west side, opposite the proposed development.

Even on the report submitted with the application, the provision of bus services to Maidstone and to Sittingbourne from the area of the development is poor, although the documents submitted are not accurate. 130/131 Buses to Maidstone for those working there go up Mierscourt Road, but it is an infrequent service, so of limited use. The 121 service may be useful for local travel, but as the first bus which goes from Rainham towards Chatham is at 9am, it is impractical for those travelling to work or school. Again, the 326/7 are no use at all for school pupils or workers. Although the 16 is reasonably frequent, the nearest stop is at the bottom of Maidstone Road, which would be a significant walk from the proposed site, probably about 20 minutes. The 132 travelling from the bottom of Mierscourt Road, which is about a 10 minute walk from the new development is frequent and runs at times convenient for children going to senior schools and workers, always assuming they have managed to cross the road safely!

Whilst I note that planning permission cannot be refused if notice is given to the company responsible for removing waste, I note that sewage waste will have to be pumped from the site. There should be a requirement for a back up pump and also for provision of a secondary power source during a cut to the mains electricity supply. Failure to make these provisions will render this development and the existing homes that will be affected like something in a developing nation!

I am very disappointed to note that the application is so vague relating to energy saving or even energy generation. There is a lot saying what will not be done, but very little positive, save that insulation will be considered. Medway Council should insist on alternative energy generation, such as fitting solar panels if the targets for alternative energy sources are ever to be met.

My last objection concerns the loss of green space. This land is an Area of Local Landscape Importance and separates Rainham from Upchurch, as well as providing some recreational space for dog walkers and community activity, such as boot fairs. The desirability of keeping open land and trees cannot be over stated for the beneficial effects they have on the environment.

A new development would massively change the character of the Conservation Area, much of which is made up of listed buildings. Along with the need to preserve green space, this has been recognised by Medway Council before when planning permission was refused for development off South Bush Lane behind our own home and also in Seymour Road. Building on every scrap of space will significantly change the aspect of the area for existing residents, most of whom moved here to get out of a highly urbanised environment and whilst there is some small industry in Seymour Road, it utilises existing buildings which might otherwise have fallen into disuse and become unsightly.

Whilst we appreciate that much of the land bordering OQL is not currently used for agriculture, it could be converted back if the economics of farming changed. If buildings are erected, the finite resource of space to grow things is lost.

The detrimental effect on existing residents both in the immediate area of this proposal and also the wider community should far outweigh the financial benefit to be gained by thie applicant in this case and I urge that the appeal be dismissed.

Yours sincerely,

 

 

Janet Garnons-Williams

 

 

 

 

Site design and content copyright ©December 2006. Page structure amended September 2012. Menu tables amanded July 2015. Suggestions to Builders May 2017 by Chris Garnons-Williams.

DISCLAIMER: Links to external sites are provided as a courtesy to visitors. Ivydene Horticultural Services are not responsible for the content and/or quality of external web sites linked from this site.  

 

Topic
Plants detailed in this website by
Botanical Name

A, B, C, D, E, F, G,
H, I, J, K, L, M, N,
O, P, Q, R, S, T, U,
V, W, X, Y, Z ,
Bulb
A1
, 2, 3, B, C1, 2,
D, E, F, G, Glad,
H, I, J, K, L1, 2,
M, N, O, P, Q, R,
S, T, U, V, W, XYZ ,
Evergreen Perennial
A
, B, C, D, E, F, G,
H, I, J, K, L, M, N,
O, P, Q, R, S, T, U,
V, W, X, Y, Z ,
Herbaceous Perennial
A1
, 2, B, C, D, E, F,
G, H, I, J, K, L, M,
N, O, P1, 2, Q, R,
S, T, U, V, W, XYZ,
Diascia Photo Album,
UK Peony Index

Wildflower
Botanical Names,
Common Names ,

will be
compared in:- Flower colour/month
Evergreen Perennial
,
F
lower shape Wildflower Flower Shape and
Plant use
Evergreen Perennial Flower Shape,
Bee plants for hay-fever sufferers

Bee-Pollinated Index
Butterfly
Egg, Caterpillar, Chrysalis, Butterfly Usage
of Plants.
Chalk
A, B, C, D, E, F, G,
H, I, J, K, L, M, N,
O, P, QR, S, T, UV,
WXYZ
Companion Planting
A, B, C, D, E, F, G,
H, I, J, K, L, M, N,
O, P, Q, R , S, T,
U ,V, W, X, Y, Z,
Pest Control using Plants
Fern Fern
1000 Ground Cover A, B, C, D, E, F, G,
H, I, J, K, L, M, N,
O, P, Q, R, S, T, U,
V, W, XYZ ,
Rock Garden and Alpine Flowers
A, B, C, D, E, F, G,
H, I, J, K, L, M,
NO, PQ, R, S, T,
UVWXYZ

Rose Rose Use

These 5 have Page links in rows below
Bulbs from the Infill Galleries (next row), Camera Photos,
Plant Colour Wheel Uses,
Sense of Fragrance, Wild Flower


Case Studies
...Drive Foundations
Ryegrass and turf kills plants within Roadstone and in Topsoil due to it starving and dehydrating them.
CEDAdrive creates stable drive surface and drains rain into your ground, rather than onto the public road.
8 problems caused by building house on clay or with house-wall attached to clay.
Pre-building work on polluted soil.

Companion Planting
to provide a Companion Plant to aid your selected plant or deter its pests

Garden
Construction

with ground drains

Garden Design
...How to Use the Colour Wheel Concepts for Selection of Flowers, Foliage and Flower Shape
...RHS Mixed
Borders

......Bedding Plants
......Her Perennials
......Other Plants
......Camera photos of Plant supports
Garden
Maintenance

Glossary with a tomato teaching cauliflowers
Home
Library of over 1000 books
Offbeat Glossary with DuLally Bird in its flower clock.

Plants
...in Chalk
(Alkaline) Soil
......A-F1, A-F2,
......A-F3, G-L, M-R,
......M-R Roses, S-Z
...in Heavy
Clay Soil
......A-F, G-L, M-R,
......S-Z
...in Lime-Free
(Acid) Soil
......A-F, G-L, M-R,
......S-Z
...in Light
Sand Soil
......A-F, G-L, M-R,
......S-Z.
...Poisonous Plants.
...Extra Plant Pages
with its 6 Plant Selection Levels

Soil
...
Interaction between 2 Quartz Sand Grains to make soil
...
How roots of plants are in control in the soil
...
Without replacing Soil Nutrients, the soil will break up to only clay, sand or silt
...
Subsidence caused by water in Clay
...
Use water ring for trees/shrubs for first 2 years.

Tool Shed with 3 kneeling pads
Useful Data with benefits of Seaweed

Topic -
Plant Photo Galleries
If the plant type below has flowers, then the first gallery will include the flower thumbnail in each month of 1 of 6 colour comparison pages of each plant in its subsidiary galleries, as a low-level Plant Selection Process

Aquatic
Bamboo
Bedding
...by Flower Shape

Bulb
...Allium/ Anemone
...Autumn
...Colchicum/ Crocus
...Dahlia
...Gladiolus with its 40 Flower Colours
......European A-E
......European F-M
......European N-Z
......European Non-classified
......American A,
B, C, D, E, F, G,
H, I, J, K, L, M,
N, O, P, Q, R, S,
T, U, V, W, XYZ
......American Non-classified
......Australia - empty
......India
......Lithuania
...Hippeastrum/ Lily
...Late Summer
...Narcissus
...Spring
...Tulip
...Winter
...Each of the above ...Bulb Galleries has its own set of Flower Colour Pages
...Flower Shape
...Bulb Form

...Bulb Use

...Bulb in Soil


Further details on bulbs from the Infill Galleries:-
Hardy Bulbs
...Aconitum
...Allium
...Alstroemeria
...Anemone

...Amaryllis
...Anthericum
...Antholyzas
...Apios
...Arisaema
...Arum
...Asphodeline

...Asphodelus
...Belamcanda
...Bloomeria
...Brodiaea
...Bulbocodium

...Calochorti
...Cyclobothrias
...Camassia
...Colchicum
...Convallaria 
...Forcing Lily of the Valley
...Corydalis
...Crinum
...Crosmia
...Montbretia
...Crocus

...Cyclamen
...Dicentra
...Dierama
...Eranthis
...Eremurus
...Erythrnium
...Eucomis

...Fritillaria
...Funkia
...Galanthus
...Galtonia
...Gladiolus
...Hemerocallis

...Hyacinth
...Hyacinths in Pots
...Scilla
...Puschkinia
...Chionodoxa
...Chionoscilla
...Muscari

...Iris
...Kniphofia
...Lapeyrousia
...Leucojum

...Lilium
...Lilium in Pots
...Malvastrum
...Merendera
...Milla
...Narcissus
...Narcissi in Pots

...Ornithogalum
...Oxalis
...Paeonia
...Ranunculus
...Romulea
...Sanguinaria
...Sternbergia
...Schizostylis
...Tecophilaea
...Trillium

...Tulip
...Zephyranthus

Half-Hardy Bulbs
...Acidanthera
...Albuca
...Alstroemeri
...Andro-stephium
...Bassers
...Boussing-aultias
...Bravoas
...Cypellas
...Dahlias
...Galaxis,
...Geissorhizas
...Hesperanthas

...Gladioli
...Ixias
...Sparaxises
...Babianas
...Morphixias
...Tritonias

...Ixiolirions
...Moraeas
...Ornithogalums
...Oxalises
...Phaedra-nassas
...Pancratiums
...Tigridias
...Zephyranthes
...Cooperias

Uses of Bulbs:-
...for Bedding
...in Windowboxes
...in Border
...naturalized in Grass
...in Bulb Frame
...in Woodland Garden
...in Rock Garden
...in Bowls
...in Alpine House
...Bulbs in Green-house or Stove:-
...Achimenes
...Alocasias
...Amorpho-phalluses
...Arisaemas
...Arums
...Begonias
...Bomareas
...Caladiums

...Clivias
...Colocasias
...Crinums
...Cyclamens
...Cyrtanthuses
...Eucharises
...Urceocharis
...Eurycles

...Freesias
...Gloxinias
...Haemanthus
...Hippeastrums

...Lachenalias
...Nerines
...Lycorises
...Pencratiums
...Hymenocallises
...Richardias
...Sprekelias
...Tuberoses
...Vallotas
...Watsonias
...Zephyranthes

...Plant Bedding in
......Spring

......Summer
...Bulb houseplants flowering during:-
......January
......February
......March
......April
......May
......June
......July
......August
......September
......October
......November
......December
...Bulbs and other types of plant flowering during:-
......Dec-Jan
......Feb-Mar
......Apr-May
......Jun-Aug
......Sep-Oct
......Nov-Dec
...Selection of the smaller and choicer plants for the Smallest of Gardens with plant flowering during the same 6 periods as in the previous selection

Climber in
3 Sector Vertical Plant System
...Clematis
...Climbers
Conifer
Deciduous Shrub
...Shrubs - Decid
Deciduous Tree
...Trees - Decid
Evergreen Perennial
...P-Evergreen A-L
...P-Evergreen M-Z
...Flower Shape
Evergreen Shrub
...Shrubs - Evergreen
...Heather Shrub
...Heather Index
......Andromeda
......Bruckenthalia
......Calluna
......Daboecia
......Erica: Carnea
......Erica: Cinerea
......Erica: Others
Evergreen Tree
...Trees - Evergreen
Fern
Grass
Hedging
Herbaceous
Perennial

...P -Herbaceous
...Peony
...Flower Shape
...RHS Wisley
......Mixed Border
......Other Borders
Herb
Odds and Sods
Rhododendron

Rose
...RHS Wisley A-F
...RHS Wisley G-R
...RHS Wisley S-Z
...Rose Use - page links in row 6. Rose, RHS Wisley and Other Roses rose indices on each Rose Use page
...Other Roses A-F
...Other Roses G-R
...Other Roses S-Z
Pruning Methods
Photo Index
R 1, 2, 3
Peter Beales Roses
RV Roger
Roses

Soft Fruit
Top Fruit
...Apple

...Cherry
...Pear
Vegetable
Wild Flower and
Butterfly page links are in next row

Topic -
UK Butterfly:-
...Egg, Caterpillar, Chrysalis and Butterfly Usage
of Plants.
...Plant Usage by
Egg, Caterpillar, Chrysalis and Butterfly.

Both native wildflowers and cultivated plants, with these
...Flower Shape,
...
Uses in USA,
...
Uses in UK and
...
Flo Cols / month are used by Butter-flies native in UK


Wild Flower
with its wildflower flower colour page, space,
data page(s).
...Blue Site Map.
Scented Flower, Foliage, Root.
Story of their Common Names.
Use of Plant with Flowers.
Use for Non-Flowering Plants.
Edible Plant Parts.
Flower Legend.
Flowering plants of
Chalk and
Limestone 1
, 2.
Flowering plants of Acid Soil
1.
...Brown Botanical Names.
Food for
Butterfly/Moth.

...Cream Common Names.
Coastal and Dunes.
Sandy Shores and Dunes.
...Green Broad-leaved Woods.
...Mauve Grassland - Acid, Neutral, Chalk.
...Multi-Cols Heaths and Moors.
...Orange Hedge-rows and Verges.
...Pink A-G Lakes, Canals and Rivers.
...Pink H-Z Marshes, Fens, Bogs.
...Purple Old Buildings and Walls.
...Red Pinewoods.
...White A-D
Saltmarshes.
Shingle Beaches, Rocks and Cliff Tops.
...White E-P Other.
...White Q-Z Number of Petals.
...Yellow A-G
Pollinator.
...Yellow H-Z
Poisonous Parts.
...Shrub/Tree River Banks and other Freshwater Margins. and together with cultivated plants in
Colour Wheel.

You know its
name:-
a-h, i-p, q-z,
Botanical Names, or Common Names,
habitat:-
on
Acid Soil,
on
Calcareous
(Chalk) Soil
,
on
Marine Soil,
on
Neutral Soil,
is a
Fern,
is a
Grass,
is a
Rush,
is a
Sedge, or
is
Poisonous.

Each plant in each WILD FLOWER FAMILY PAGE will have a link to:-
1) its created Plant Description Page in its Common Name column, then external sites:-
2) to purchase the plant or seed in its Botanical Name column,
3) to see photos in its Flowering Months column and
4) to read habitat details in its Habitat Column.
Adder's Tongue
Amaranth
Arrow-Grass
Arum
Balsam
Bamboo
Barberry
Bedstraw
Beech
Bellflower
Bindweed
Birch
Birds-Nest
Birthwort
Bogbean
Bog Myrtle
Borage
Box
Broomrape
Buckthorn
Buddleia
Bur-reed
Buttercup
Butterwort
Cornel (Dogwood)
Crowberry
Crucifer (Cabbage/Mustard) 1
Crucifer (Cabbage/Mustard) 2
Cypress
Daffodil
Daisy
Daisy Cudweeds
Daisy Chamomiles
Daisy Thistle
Daisy Catsears Daisy Hawkweeds
Daisy Hawksbeards
Daphne
Diapensia
Dock Bistorts
Dock Sorrels
Clubmoss
Duckweed
Eel-Grass
Elm
Filmy Fern
Horsetail
Polypody
Quillwort
Royal Fern
Figwort - Mulleins
Figwort - Speedwells
Flax
Flowering-Rush
Frog-bit
Fumitory
Gentian
Geranium
Glassworts
Gooseberry
Goosefoot
Grass 1
Grass 2
Grass 3
Grass Soft
Bromes 1

Grass Soft
Bromes 2

Grass Soft
Bromes 3

Hazel
Heath
Hemp
Herb-Paris
Holly
Honeysuckle
Horned-Pondweed
Hornwort
Iris
Ivy
Jacobs Ladder
Lily
Lily Garlic
Lime
Lobelia
Loosestrife
Mallow
Maple
Mares-tail
Marsh Pennywort
Melon (Gourd/Cucumber)
Mesem-bryanthemum
Mignonette
Milkwort
Mistletoe
Moschatel
Naiad
Nettle
Nightshade
Oleaster
Olive
Orchid 1
Orchid 2
Orchid 3
Orchid 4
Parnassus-Grass
Peaflower
Peaflower
Clover 1

Peaflower
Clover 2

Peaflower
Clover 3

Peaflower Vetches/Peas
Peony
Periwinkle
Pillwort
Pine
Pink 1
Pink 2
Pipewort
Pitcher-Plant
Plantain
Pondweed
Poppy
Primrose
Purslane
Rannock Rush
Reedmace
Rockrose
Rose 1
Rose 2
Rose 3
Rose 4
Rush
Rush Woodrushes
Saint Johns Wort
Saltmarsh Grasses
Sandalwood
Saxifrage
Seaheath
Sea Lavender
Sedge Rush-like
Sedges Carex 1
Sedges Carex 2
Sedges Carex 3
Sedges Carex 4
Spindle-Tree
Spurge
Stonecrop
Sundew
Tamarisk
Tassel Pondweed
Teasel
Thyme 1
Thyme 2
Umbellifer 1
Umbellifer 2
Valerian
Verbena
Violet
Water Fern
Waterlily
Water Milfoil
Water Plantain
Water Starwort
Waterwort
Willow
Willow-Herb
Wintergreen
Wood-Sorrel
Yam
Yew


Topic -
The following is a complete hierarchical Plant Selection Process

dependent on the Garden Style chosen
Garden Style
...Infill Plants
...12 Bloom Colours per Month Index
...12 Foliage Colours per Month Index
...All Plants Index
...Cultivation, Position, Use Index
...Shape, Form
Index


Topic -
Flower/Foliage Colour Wheel Galleries with number of colours as a high-level Plant Selection Process

All Flowers 53 with
...Use of Plant and
Flower Shape
- page links in bottom row

All Foliage 53
instead of redundant
...(All Foliage 212)


All Flowers
per Month 12


Bee instead of wind pollinated plants for hay-fever sufferers
All Bee-Pollinated Flowers
per Month
12
...Index

Rock Garden and Alpine Flowers
Rock Plant Flowers 53
INDEX
A, B, C, D, E, F,
G, H, I, J, K, L,
M, NO, PQ, R, S,
T, UVWXYZ
...Rock Plant Photos

Flower Colour Wheel without photos, but with links to photos
12 Bloom Colours
per Month Index

...All Plants Index


Topic -
Use of Plant in your Plant Selection Process

Plant Colour Wheel Uses
with
1. Perfect general use soil is composed of 8.3% lime, 16.6% humus, 25% clay and 50% sand, and
2. Why you are continually losing the SOIL STRUCTURE so your soil - will revert to clay, chalk, sand or silt.
Uses of Plant and Flower Shape:-
...Foliage Only
...Other than Green Foliage
...Trees in Lawn
...Trees in Small Gardens
...Wildflower Garden
...Attract Bird
...Attract Butterfly
1
, 2
...Climber on House Wall
...Climber not on House Wall
...Climber in Tree
...Rabbit-Resistant
...Woodland
...Pollution Barrier
...Part Shade
...Full Shade
...Single Flower provides Pollen for Bees
1
, 2, 3
...Ground-Cover
<60
cm
60-180cm
>180cm
...Hedge
...Wind-swept
...Covering Banks
...Patio Pot
...Edging Borders
...Back of Border
...Poisonous
...Adjacent to Water
...Bog Garden
...Tolerant of Poor Soil
...Winter-Flowering
...Fragrant
...Not Fragrant
...Exhibition
...Standard Plant is 'Ball on Stick'
...Upright Branches or Sword-shaped leaves
...Plant to Prevent Entry to Human or Animal
...Coastal Conditions
...Tolerant on North-facing Wall
...Cut Flower
...Potted Veg Outdoors
...Potted Veg Indoors
...Thornless
...Raised Bed Outdoors Veg
...Grow in Alkaline Soil A-F, G-L, M-R,
S-Z
...Grow in Acidic Soil
...Grow in Any Soil
...Grow in Rock Garden
...Grow Bulbs Indoors

Uses of Bedding
...Bedding Out
...Filling In
...Screen-ing
...Pots and Troughs
...Window Boxes
...Hanging Baskets
...Spring Bedding
...Summer Bedding
...Winter Bedding
...Foliage instead of Flower
...Coleus Bedding Photos for use in Public Domain 1

Uses of Bulb
...Other than Only Green Foliage
...Bedding or Mass Planting
...Ground-Cover
...Cut-Flower
...Tolerant of Shade
...In Woodland Areas
...Under-plant
...Tolerant of Poor Soil
...Covering Banks
...In Water
...Beside Stream or Water Garden
...Coastal Conditions
...Edging Borders
...Back of Border or Back-ground Plant
...Fragrant Flowers
...Not Fragrant Flowers
...Indoor
House-plant

...Grow in a Patio Pot
...Grow in an Alpine Trough
...Grow in an Alpine House
...Grow in Rock Garden
...Speciman Plant
...Into Native Plant Garden
...Naturalize in Grass
...Grow in Hanging Basket
...Grow in Window-box
...Grow in Green-house
...Grow in Scree
...Naturalized Plant Area
...Grow in Cottage Garden
...Attracts Butterflies
...Attracts Bees
...Resistant to Wildlife
...Bulb in Soil:-
......Chalk
......Clay
......Sand
......Lime-Free (Acid)
......Peat

Uses of Rose
Rose Index

...Bedding 1, 2
...Climber /Pillar
...Cut-Flower 1, 2
...Exhibition, Speciman
...Ground-Cover
...Grow In A Container 1, 2
...Hedge 1, 2
...Climber in Tree
...Woodland
...Edging Borders
...Tolerant of Poor Soil 1, 2
...Tolerant of Shade
...Back of Border
...Adjacent to Water
...Page for rose use as ARCH ROSE, PERGOLA ROSE, COASTAL CONDITIONS ROSE, WALL ROSE, STANDARD ROSE, COVERING BANKS or THORNLESS ROSES.
...FRAGRANT ROSES
...NOT FRAGRANT ROSES


Topic -
Camera Photo Galleries showing all 4000 x 3000 pixels of each photo on your screen that you can then click and drag it to your desktop as part of a Plant Selection Process:-

RHS Garden at Wisley

Plant Supports -
When supporting plants in a bed, it is found that not only do those plants grow upwards, but also they expand their roots and footpad sideways each year. Pages
1
, 2, 3, 8, 11,
12, 13,
Plants 4, 7, 10,
Bedding Plants 5,
Plant Supports for Unknown Plants 5
,
Clematis Climbers 6,
the RHS does not appear to either follow it's own pruning advice or advice from The Pruning of Trees, Shrubs and Conifers by George E. Brown.
ISBN 0-571-11084-3 with the plants in Pages 1-7 of this folder. You can see from looking at both these resources as to whether the pruning carried out on the remainder of the plants in Pages 7-15 was correct.

Narcissus (Daffodil) 9,
Phlox Plant Supports 14, 15

Coleus Bedding Foliage Trial - Pages
1, 2, 3, 4, 5,
6, 7, 8, 9, 10,
11, 12, 13, 14, 15,
16, 17, 18, 19, 20,
21, 22, 23, 24, 25,
26, 27, 28, 29, 30,
31, 32, Index

National Trust Garden at Sissinghurst Castle
Plant Supports -
Pages for Gallery 1

with Plant Supports
1, 5, 10
Plants
2, 3, 4, 6, 7, 8, 9,
11, 12
Recommended Rose Pruning Methods 13
Pages for Gallery 2
with Plant Supports
2
,
Plants 1, 3, 4, 5, 6, 7

Dry Garden of
RHS Garden at
Hyde Hall

Plants - Pages
without Plant Supports
Plants 1
, 2, 3, 4, 5, 6, 7, 8, 9

Nursery of
Peter Beales Roses
Display Garden

Roses Pages
1, 2, 3, 4, 5,
6, 7, 8, 9, 10,
11, 12, 13

Nursery of
RV Roger

Roses - Pages
A1,A2,A3,A4,A5,
A6,A7,A8,A9,A10,
A11,A12,A13,A14,
B15,
B16,B17,B18,B19,
B20,
B21,B22,B23,B24,
B25,
B26,B27,B28,B29,
B30,
C31,C32,C33,C34,
C35,
C36,C37,C38,C39,
C40,
C41,CD2,D43,D44,
D45,
D46,D47,D48,D49,
E50,
E51,E52,F53,F54,
F55,
F56,F57,G58,G59,
H60,
H61,I62,K63,L64,
M65,
M66,N67,P68,P69,
P70,
R71,R72,S73,S74,
T75,
V76,Z77, 78,

Damage by Plants in Chilham Village - Pages
1, 2, 3, 4

Pavements of Funchal, Madeira
Damage to Trees - Pages
1, 2, 3, 4, 5,
6, 7, 8, 9, 10,
11, 12, 13
for trees 1-54,
14, 15,
16, 17, 18, 19, 20,
21, 22, 23, 24, 25,
for trees 55-95,
26, 27, 28, 29, 30,
31, 32, 33, 34, 35,
36, 37,
for trees 95-133,
38, 39, 40,
41, 42, 43, 44, 45,
for trees 133-166

Chris Garnons-Williams
Work Done - Pages
1, 2, 3, 4, 5,
6, 7, 8, 9, 10,
11, 12, 13

Identity of Plants
Label Problems - Pages
1, 2, 3, 4, 5,
6, 7, 8, 9, 10,
11

Ron and Christine Foord - 1036 photos only inserted so far - Garden Flowers - Start Page of each Gallery
AB1 ,AN14,BA27,
CH40,CR52,DR63,
FR74,GE85,HE96,

Plant with Photo Index of Ivydene Gardens - 1187
A 1, 2, Photos - 43
B 1, Photos - 13
C 1, Photos - 35
D 1, 2, 3, 4, 5, 6, 7,
Photos - 411
with Plants causing damage to buildings in Chilham Village and Damage to Trees in Pavements of Funchal
E 1, Photos - 21
F 1, Photos - 1
G 1, Photos - 5
H 1, Photos - 21
I 1, Photos - 8
J 1, Photos - 1
K 1, Photos - 1
L 1, Photos - 85
with Label Problems
M 1, Photos - 9
N 1, Photos - 12
O 1, Photos - 5
P 1, Photos - 54
Q 1, Photos -
R 1, 2, 3,
Photos - 229
S 1, Photos - 111
T 1, Photos - 13
U 1, Photos - 5
V 1, Photos - 4
W 1, Photos - 100
with Work Done by Chris Garnons-Williams
X 1 Photos -
Y 1, Photos -
Z 1 Photos -
Articles/Items in Ivydene Gardens - 88
Flower Colour, Num of Petals, Shape and
Plant Use of:-
Rock Garden
within linked page

 

Topic -
Fragrant Plants as a Plant Selection Process for your sense of smell:-

Sense of Fragrance from Roy Genders

Fragrant Plants:-
Trees and Shrubs with Scented Flowers
1
, 2, 3, 4, 5, 6
Shrubs bearing Scented Flowers for an Acid Soil
1
, 2, 3, 4
Shrubs bearing Scented Flowers for a
Chalky or Limestone Soil
1
, 2, 3, 4
Shrubs bearing Scented leaves for a
Sandy Soil
1
, 2, 3
Herbaceous Plants with Scented Flowers
1
, 2, 3
Annual and Biennial Plants with Scented Flowers or Leaves
1
, 2
Bulbs and Corms with Scented Flowers
1
, 2, 3, 4, 5
Scented Plants of Climbing and Trailing Habit
1
, 2, 3
Winter-flowering Plants with Scented Flowers
1
, 2
Night-scented Flowering Plants
1
, 2


Topic -
Website User Guidelines


My Gas Service Engineer found Flow and Return pipes incorrectly positioned on gas boilers and customers had refused to have positioning corrected in 2020.