Ivydene Gardens Case Studies:
Site Map
 

 

Design Cases

When designing a garden, it is vital to know who and for how long the resulting designed and landscaped garden is going to be maintained by. The book 'The One Hour Garden' describes what maintenance work can be done in the time that you have allotted; and therefore what besides a lawn, you can have in your garden. My redesign and construction work to be done on my 3 gardens - as shown by
Case 2 Structural Design for My Front Garden ,
Case 2a New Garage to separate Back Garden and Vegetable Garden and
Case 2b Redesign for my Back Garden
- must be to reduce the maintenance time required to the time I have available.

.

If the gardens are first weeded, pruned, mulched, mown and bare earth converted to lawns using grass seed, then construction can take place in the future - as free time allows during a week or fortnight after the maintenance has been done.

In Case 4, the combination of the Structural and Planting Designs would create a garden that I would be able to maintain in one day a fortnight. I would install a 3" deep mulch in the spring on the beds, so that I can prune the shrubs/trees and hoe the odd weed; whilst the father mows the lawns, the mother tends the vegetable garden and their teenage daughters play football!!

The children in Case 5 loved to look at creepy-crawlies and wildlife, so that together with low-cost the design for different areas in a terrace house garden was created.

Construction Cases

Case 3 is building a drive on clay and it is important to get the part you will not see - the foundations - done correctly.

Case 8 is creating a pond with its pitfalls for foundations.

Maintenance Cases

If you are asking someone to maintain your garden, then do provide the complete picture. If as in Case 1, you intend to sell the property, then look at this - as not a maintenance but as a selling job - and get that job done instead.

Case 6 is creating a vegetable garden in a back garden during the maintenance program of one day a fortnight to maintain it and the remainder of the back and front gardens. This was done over 7 years using a crop rotation system

Concrete ponds are likely to crack open due to movement in the ground levels due to being in clay or vibration caused by road traffic if it is fairly close. Case 7 shows no planting shelves for the pond plants.

Practical Case Studies
Case 1 - Prepare Property for Sale.
Case 2 - Structural Design for My Front Garden
Case 2a - New Garage
Case 2b - Redesign for My Back Garden
Case 3 - Drive Foundations in Clay
Case 3a - Clay on Sand Subsidence of New House
Case 3b - Pre-Building Work for Builders with polluted soil
Aquadyne drainage system
Factors causing Subsidence of Buildings, especially Tree Roots in Clay Soils
How Soil is created with organic matter
Why is Organic Matter important to Soil?
In Soil Formation - What is Soil Texture?
In Soil Formation - What is Soil Structure?
How is clay created?
How is Humus made?
How does Water act in the Soil?
What are Soil Nutrients?
The Carbon Cycle
The Nitrogen Cycle
What types of organism are found in the Soil?
How do soil microbes recycle nutrients?
What Physical changes occur in Soil because of Weather?
What Chemical changes occur in Soil because of Weather?
How are Chemicals stored and released from Soil?
How is material lost from the soil?
Action plan for you to do with your soil.
Garden Hedges from Mobilane
Grass List
Thorny Hedge Garden Use
Windbreak Garden Use
Hedge Garden Use
Coastal Conditions Garden Use
Woodland Garden Use
Pollution Barrier Garden Use
Case 4 - Garden Uses Separated
Case 4 - Garden Uses Separated Planting Plans
Case 5 - Terraced House Back Garden for Wildlife
Case 6 - Vegetable Garden over 7 Years
Case 7 - Repair of Concrete Pond
Case 8 - Creation of Pond
Case Studies Site Map

'Farmosaurus' a giant dinosaur, (summer 2004) was designed and grown in a field of 9ft tall maize (like sweetcorn but not edible) by Gore Farm to provide the public with entertainment during the school summer holidays and for a few weeks either side (late July to early September).

8 years of Maize Mazes has raised over £10,000 for charity.mr25001

 

Site design and content copyright ©December 2006. Page structure amended October 2012. Chris Garnons-Williams.

DISCLAIMER: Links to external sites are provided as a courtesy to visitors. Ivydene Horticultural Services are not responsible for the content and/or quality of external web sites linked from this site.  

 

Case Studies Pages
Site Map

Case
1 - Prepare for Sale

2 - Structural Design
.....2a - New Garage
.....2b - Redesign for My Back Garden

 

 

3 - Drive Foundations
.....3a Clay on Sand Subsidence of New House and
...........there are Other Factors causing subsidence. Part
..............of solution is to use
...........Aquadyne Drainage System to transport
..............rainwater within garden area to evergreen
..............plants that can use it.

Pages about soil and why clay causes problems:-
How Soil is created with organic matter and
why Organic Matter is important to Soil?

Soil Formation combines Rock Particles, Humus, Water and Air into Soil Texture with
Soil Structure, which is the interaction between clay domains, organic matter, silt and sand particles. So
How is Clay created? ,
How is Humus made? and
How does Water act in the Soil?

What are the Soil Nutrients besides
the Carbon Cycle and
the Nitrogen Cycle.

What types of organisms are found in the soil? and
how do soil microbes recycle nutrients?

What Pysical changes occur in Soil because of weather? and what Chemical changes occur in Soil because of weather? leading to
how are Chemicals stored and released from Soil? with
how is material lost from the soil?

This leads to an
Action plan for you to do with your soil and

3b Pre-Building Work for Builders to treat polluted soil using phyto-remediation plants.
Perhaps after Builders have read the following section:-

item2

Then, they could follow my following Suggested Action Plan for Builders after they have built their houses:-
Lay the
Aquadyne Drainage System round the perimeter of the new garden areas.
Next to it then plant 1 of these Instant Hedges on the non-house wall sides to absorb the rainwater collected by that drainage system:-

And finally on the same day pour a depth of 11 inches (27.5 cms) depth of the builders soil mixture detailed below onto the remainder of the new garden areas and alongside the Instant Hedging.

To provide a different requirement from the current plants used in the above Instant Hedges, plants for each of the following could be used instead:-

A fortnight later the following type of turf containing RTF (Rhizomatous Tall Fescue), bred by Barenbrug Research USA, could be laid over the proposed lawn areas.

The roots of that grass will reach the clay below and stabilise the new builders soil mix, before the proposed owners view the property a month later.

The builders soil mix should within 3 months become roughly the same proportion of clay, silt and sand which is within a Sandy Clay Loam to create a sweet spot for growing plants as shown on How is material lost from the soil? Page, since it will mix with the clay below.

 



4a - Garden Uses
......4b - Garden Plant Plan

5 - Wildlife Garden

6 - Vegetable Garden

7 - Repair of Concrete Pond

8 - Creation of Pond

 

Design Cases

When designing a garden, it is vital to know who and for how long the resulting designed and landscaped garden is going to be maintained by. The book 'The One Hour Garden' describes what maintenance work can be done in the time that you have allotted; and therefore what besides a lawn, you can have in your garden. My redesign and construction work to be done on my 3 gardens - as shown by Case 2 - must be to reduce the maintenance time required to the time I have available. If the gardens are first weeded, pruned, mulched, mown and bare earth converted to lawns using grass seed, then construction can take place in the future - as free time allows during a week or fortnight after the maintenance has been done.

In Case 4, the combination of the Structural and Planting Designs would create a garden that I would be able to maintain in one day a fortnight. I would install a 3" deep mulch in the spring on the beds, so that I can prune the shrubs/trees and hoe the odd weed; whilst the father mows the lawns, the mother tends the vegetable garden and their teenage daughters play football!!

The children in Case 5 loved to look at creepy-crawlies and wildlife, so that together with low-cost the design for different areas in a terrace house garden was created.

 

Construction Cases

Case 3 is building a drive on clay and it is important to get the part you will not see - the foundations - done correctly.

Case 8 is creating a pond with its pitfalls for foundations.

 

Maintenance Cases

If you are asking someone to maintain your garden, then do provide the complete picture. If as in Case 1, you intend to sell the property, then look at this - as not a maintenance but as a selling job - and get that job done instead.

Case 6 is creating a vegetable garden in a back garden during the maintenance program of one day a fortnight to maintain it and the remainder of the back and front gardens. This was done over 7 years using a crop rotation system

Concrete ponds are likely to crack open due to movement in the ground levels due to being in clay or vibration caused by road traffic if it is fairly close. Case 7 shows no planting shelves for the pond plants.

 

 

 

 

Section below on Problems for Houseowners and Builders when the new home is surrounded by clay and how to solve them.

 

 

 

Problems for Houseowners and Builders when the new home is surrounded clay and how to solve them.

8 problems caused by clay:-

  • In creating a new driveway for a client you can see (from the top photos) that when it rains, that the indentations in the clay caused by my boots do fill with water and then that water does not drain away.
    Solution -
    Had I installed a soakaway under the drive or elsewhere in the back garden below the drive, then it would have filled with water and not drained.
    If the ground is clay, then that soakaway will fill and never empty. In that case if you create that soakaway as a continuous one about 2 feet away from the boundary with it starting 3 feet from house and continuing round to meet the entrance of the drive, then planting privet or yew evergreen hedge in that 2 feet gap between it and the boundary will absorb the water from that driveway. The 2 feet depth of existing clay soil between that extended soakaway and the boundary should be replaced by the following mixture of 1 part existing soil and 1 part sand to provide a soil where the soakaway water can move from the soakaway through the soil to the hedge roots. The french drain used to transport the water should be surrounded by 4 inches of coarse pea-shingle inside an envelope of geotextile to stop that pea-shingle from mixing with the mixed soil.
  • The same happened to a client's house, which subsided after 6 years from being built. The builder had run out of top soil and instead of putting sand as the rest of the back garden was composed of where it had been growing a forest, they put 24 inches (60 cms) of blue clay the full width of the back of the house which sloped up and met the upward sloping lawn laid by the builders. The lawn prevented much of the rainwater from entering the sand underneath and thus draining away and ended up on the 144 inch (360 cms) wide slabbed patio before hitting the house wall and soaking into the blue clay below the slabs. Clay can absorb 40% of its own volume before it turns from a solid to a liquid. When the clay absorbs the water, then the suction on the housewall is sufficient to raise that wall. When it dries out then the wall subsides and so it subsided. The 6th photo down the Case 3a Clay on Sand Subsidence of New House Page shows the blue clay as the dark section at the top of the trench with the sand being dark yellow below it.
    Solution 1 -
    Instead of the patio sloping up the back garden, I installed a concrete foundation for a conservatory with the concrete going 12 inches (30 cms) deeper than the 24 depth of blue clay. Then, t
    he foundation for the new Path/Patio at the back of the house was sloped away from the house at 1:40 and the rain drained to the Gully, thence to the Sump in the middle of the garden. I then bought a powerful Cultivator Tiller and rotovated the back lawn. Using an asphalt rake and a spade with wheelbarrow; I then levelled the remaining back garden lawn in both directions, with the conservatory/path areas sloping away from the house to allow rainwater to be collected and taken to the sump, instead of causing further damage to the house. The levelled lawn then needed a Patio wall to stop the earth from being unsurported. A builder than built the conservatory, the restraining patio wall and the new path/patio.
    Solution 2 -
    If that area of blue clay had been surrounded by the Aquadyne Drainage System (details at bottom of this page) by the original builders to a 36 inches depth, then the problem would never have arisen as all the rainwater would have been transferred to the surrounding sand soil and the underlying sand. Thus the suction power of the clay would have been on the Aquadyne and not the house wall. Since the Aquadyne is plastic it would if it moved up and down and not taken the house wall with it.
  • There are other factors causing Subsidence of Buildings, especially Tree Roots in Clay Soils.
  • I spent some months maintaining the grounds within 5 acres of a new Care Home. The previous use for these 5 acres had been as a boys school. This had been demolished and the rubble then built on for the 5 new residential Care Buildings with its Administration/Kitchen Building. 5000 shrubs and trees were planted and at the end of the first year, I audited what remained - 2000 out those 5000 had died. The builders had generously added a 2 inches (5 cm) depth of topsoil before planting into that and the rubble under it.
    Solution -
    I bought an American Super Tomahawk Chipper/Shredder and shredded the tree/shrub prunings during the winter and applied the shreddings as a mulch in the further beds on the 5 acre estate during the winter to provide nutrients for the surviving plant.
    I did suggest putting a 4 inch mulch of bark on top of the ground in the beds at a trifling cost of £19,000, since digging up the plants and transfering them to a nursery bed, before excaving a further 12 inches (30 cm) and replacing the 14 inch (35 cm) depth with good soil mixed with manure; and then its plants; would have been extremely time consuming and expensive. This money was not forthcoming, so when I started cutting the lawns, I added the mowings to the beds as a mulch. I was told that this was unsightly and to stop doing that - at this point I resigned since the contract for the original planting only included making up the losses in the first year, I could not see that many of the plants would survive in the succeeding years.
    You need a minimum of a spade depth of at least 8 inches (20 cms) of topsoil with a 4 inch mulch of bark or spent mushroom compost surrounding each plant after the planting, plus an irrigation system - that means 12 inches below the top of the bed edging, so that the mulch does not flow out onto the lawn, patio, drive or paths after it has been laid.
  • In maintaining a client's lawn, I found that after rain that their lawn was squelchy. The lawn was laid on a clay topsoil.
    Solution-
    I mowed the lawn quite low and applied
    Top Dressing at the recommended rate. I repeated this twice more once a month. After that, the problem was sorted.
  • I received this from a client - An unsuccessful planting scheme had left bare areas of garden as plants failed to survive winter in the waterlogged clay soil. The loss of numerous plants and the cost of replacing them had left us disheartened.
    Solution -
    A
    150mm (6 inch) deep mulch of mixed peat, sharp washed sand and horticultural grit was applied on top of a heavy clay soil to improve its structure, and stop the plants therein from drowning, at £10 a square metre. The mix was:
    • 4 cubic metres of Peat (to provide the Organic Polymers/Organic Matter and Carbon.)
    • 2 cubic metres of Sharp Washed Sand (to provide the sand for the production of microaggregates)
    • 2 cubic metres of Horticultural Grit (to provide larger particles for aggregation)
    • 25kg of Garden Lime (to provide Calcium for the plants and allow clay minerals to bond together to form domains. Once clay minerals are stacked together to form domains, they can then bond with organic matter to form microaggregates)
    • 25 kg of Sulphate of Iron (to provide Iron to act as a trace element and to create soil colloid for buffering chemical nutrients in the soil for later use by plants)
    • 25Kg of Sulphate of Potash ( to provide fertilizer for the plants)

      and the following was sent to me in October 2004:- An unsuccessful planting scheme had left bare areas of garden as plants failed to survive winter in the waterlogged clay soil. The loss of numerous plants and the cost of replacing them had left us disheartened. It was evident that remedial action was needed in the form of a mixture of gravel, sand and peat to create an organic loam. Approximately six inches was added in April and left to settle and do its job. By July there was a noticeable difference in the quality of the soil and the plants. Shrubs with sparse, mottled leaves were looking glossy and robust, overall growth had increased (including the weeds!) and the soil was holding its moisture well. But the biggest difference came in the confidence it gave us to transform the garden. The borders used to be a no-go area between May and September as the clay baked and cracked, but the new soil was easy to handle and weeds could be successfully removed. We realised that there are no quick fixes - the key to a healthy garden is rich, nutritous soil. Once our plants began to thrive we were optimistic that, with good advice, we could create a garden to be proud of.
  • I visited a prospective client whose second laid lawn sloping up from the house in the back garden was needed to be replaced. The turves had dried and the clay soil had also dried with the result that the turves separated. She had had the builder lay a horizontal patio at the back of her new house and the lawn went from there up to the next house. Her home and garden were on clay. I did point out to her that when it rained, then the patio would become a lake and her house would subside, since not only the rain falling on the patio but the rain falling on the lawn would also end up at the patio. I refused to quote for her lawn replacement.
    Solution -
    in next row.
  • When requested by a builder, I visited his site where huge excavators were used to dig the trenches for the drains and utilities. The garden at the back of the showhouse had a downward slope from the garden wall to the house and moss was already growing round the french windows facing the back garden.
    Solution -
    in next Row.

     

 

Builders do sell the original topsoil including

  • the grass,
  • the zone of organic matter and the
  • zone where mineral and organic matter are mixed

where the new building and its garden areas are to be built.

soil11casestudies

The consolidated parent material (bedrock) is usually sand, chalk or clay with flint possibly. At the end of building; the builders rubble is covered with possibly only a 2 inch (5 cms) depth of imported topsoil, which might be the washings from the sugar beet in the sugar industry. This is covered with turf and the unsuspecting public is offered the result. As likely as not one of their gardens slopes towards the house and even with the modern depth of foundation wall, there is no guarantee that subsidence will not occur.

 

If every garden of a new house had a 12 inch depth of soil removed from its new garden area, then at the end of the building work, the Aquadyne drainage system would be laid round the entire boundary. Next to it then plant the relevant Instant Hedge on the non-house wall sides to absorb the rainwater collected by that drainage system

soil15casestudies

The mix to change clay soil into a friable useful soil in less than 4 months for the above domestic garden problem was in royal blue colour typing. Using the burgundy colour typing components, the builder could create the following soil mix for his gardens:

  • 4 cubic metres of Peat (to provide the Organic Polymers/Organic Matter and Carbon.)
  • 2 cubic metres of Sharp Washed Sand (to provide the sand for the production of microaggregates).
  • 2 cubic metres of Horticultural Grit (to provide larger particles for aggregation)
    752,000 tons of glass are now recycled annually in the UK. Crushed glass (cullet) is used in Agriculture and landscape applications, such as top dressing, root zone material or golf bunker sand, so builders could replace the Sharp washed Sand and the Horticultural Grit with cullet.
  • 25kg of Garden Lime (to provide Calcium for the plants and allow clay minerals to bond together to form domains. Once clay minerals are stacked together to form domains, they can then bond with organic matter to form microaggregates).
    Poultry litter -
    Uric acid and organic nitrogen (N) in the bird excreta and spilled feed are converted to ammonium (NH4+) by the microbes in the litter. Ammonium, a plant-available N form, can bind to litter and also dissolve in water. Ammonium is a highly reactive ion that bonds with sulfates, nitrates and phosphates to form ammonium salts that improve the nutrient value of litter when land applied as fertilizer.
    Plasterboard (is gypsum - Calcium sulfate dihydrate normally pressed between a paper facer and backer)
    wastage in the UK is estimated to be 300,0000 tonnes per year
    . Builders could replace the Garden Lime with the reaction of the poultry litter on the gypsum.
    The recommendations stated in the RHS article are for the finely ground garden lime (calcium carbonate) sold in garden centres in kilograms (kg) per square metre or ounces per square yard. They are based on the Department for Environment, Food and Rural Affairs (DEFRA) recommendations for incorporation into the top 20cm (8in) of soil and are enough to raise the soil pH to pH6.5. This is considered the best all-round pH for the majority of garden plants.
  • 25 kg of Sulphate of Iron (to provide Iron to act as a trace element and to create soil colloid for buffering chemical nutrients in the soil for later use by plants)
  • 25Kg of Sulphate of Potash ( to provide fertilizer for the plants)

If water with 150 kgs of clay was first added to the Concrete TruckMixer and then the required volume of cullet followed by the required volume of waste plasterboard, the mixture is then mixed for an hour. If the cullet/waste plasterboard mixture is passed through the poultry houses to mix with the poultry litter on the litter floor before being collected into the next Concrete TruckMixer, then the houses would be cleaner and smell less. The required volume of waste from beer making could replace the Peat above and the requisite Sulphate of Iron and Sulphate of Potash could be added to the Concrete TruckMixer before that mixture from the Poultry Farm litter floor is added.

That soil mixture could then be mixed for 30 minutes before applying it to the garden areas of the new houses built by the builder to an 11 inch (27.5 cms) depth. The resulting mixture would then integrate with the clay and create a deep topsoil within 3 months.

All the requirements for a soil as shown in the figure above would then have mixed together and time will increase the bacteria and get a new soil structure created.

The following type of turf could then be laid over the proposed lawn areas a fortnight later:-

RTF (Rhizomatous Tall Fescue), bred by Barenbrug Research USA, produces rhizomes (an underground stem) that send a shoot up to the soil surface while extending new roots downwards. In fact, RTF can root to 1.5 metres deep giving it a chance to tap into water reserves that normal lawn turf cannot reach.
Because RTF is suited to almost all soil types and needs little maintenance and minimal irrigation, gardeners will be rewarded with beautiful lawns, rich in colour and disease resistant, not only in the summer but all year round. During the winter months, the lawn will hold its lush green colour and can resist frost and darker corners. With the onset of spring the rapid germination and quick spring green-up means that lawns are greener earlier.

 

 

 

Section below on Plant Selection Methods

 

 

Choose 1 of these different Plant selection Methods:-

 

1. Choose a plant from 1 of 53 flower colours in the Colour Wheel Gallery.

 

2. Choose a plant from 1 of 12 flower colours in each month of the year from 12 Bloom Colours per Month Index Gallery.

 

3. Choose a plant from 1 of 6 flower colours per month for each type of plant:-

Aquatic
Bedding
Bulb
Climber
Conifer
Deciduous Shrub
Deciduous Tree
Evergreen Perennial
Evergreen Shrub
Evergreen Tree
Hedging
Herbaceous Perennial
Herb
Odds and Sods
Rhododendron
Rose
Soft Fruit
Top Fruit
Wild Flower

 

4. Choose a plant from its Flower Shape:-

Shape, Form
Index

Flower Shape

 

5. Choose a plant from its foliage:-

Bamboo
Conifer
Fern
Grass
Vegetable

 

6. There are 6 Plant Selection Levels including Bee Pollinated Plants for Hay Fever Sufferers in
Plants Topic.

 

or

 

7. when I do not have my own or ones from mail-order nursery photos , then from March 2016, if you want to start from the uppermost design levels through to your choice of cultivated and wildflower plants to change your Plant Selection Process then use the following galleries:-

  • Create and input all plants known by Amateur Gardening inserted into their Sanders' Encyclopaedia from their edition published in 1960 (originally published by them in 1895) into these
    • Stage 1 - Garden Style Index Gallery,
      then
    • Stage 2 - Infill Plants Index Gallery being the only gallery from these 7 with photos (from Wikimedia Commons) ,
      then
    • Stage 3 - All Plants Index Gallery with each plant species in its own Plant Type Page followed by choice from Stage 4a, 4b, 4c and/or 4d REMEMBERING THE CONSTRAINTS ON THE SELECTION FROM THE CHOICES MADE IN STAGES 1 AND 2
    • Stage 4a - 12 Bloom Colours per Month Index Gallery,
    • Stage 4b - 12 Foliage Colours per Month Index Gallery with
    • Stage 4c - Cultivation, Position, Use Index Gallery and
    • Stage 4d - Shape, Form Index Gallery
    • Unfortunately, if you want to have 100's of choices on selection of plants from 1000's of 1200 pixels wide by up to 16,300 pixels in length webpages, which you can jump to from almost any of the pages in these 7 galleries above, you have to put up with those links to those choices being on
      • the left topic menu table,
      • the header of the middle data table and on
      • the page/index menu table on the right of every page of those galleries.

There are other pages on Plants which bloom in each month of the year in this website:-

 

 

PLANTS PAGE
MENU
Introduction
Site Map
 

PLANT USE
Plant Selection
Level 1
Attracts Bird/Butterfly
Photos - Butterfly

Bee Pollinated Plants for Hay Fever Sufferers
Photos - Bloom per Month

Groundcover Height
0-24 inches
(0-60 cms
)
24-72 inches
(60-180 cms
)
Above 72 inches
(180 cms
)
 

Poisonous Cultivated and UK Wildflower Plants with Photos
or
Cultivated Poisonous Plants
or
Wildflower Poisonous Plants


Rabbit-Resistant Plant
Flower Arranging
Wildflower
Photos - Wildflowers

 


PLANTS FOR SOIL
Plant Selection
Level 2
Info - Any Soil
Plants - Any Soil A-F
Plants - Any Soil G-L
Plants - Any Soil M-R
Plants - Any Soil S-Z

Info - Chalky Soil
Plants - Chalk Soil A-F
Plants - Chalk Soil G-L
Plants - Chalk Soil M-R
Plants - Chalk Soil S-Z

Info - Clay Soil
Plants - Clay Soil A-F
Plants - Clay Soil G-L
Plants - Clay Soil M-R
Plants - Clay Soil S-Z

Info - Lime-Free Soil
Plants - Lime-Free Soil A-F
Plants - Lime-Free Soil G-L
Plants - Lime-Free Soil M-R
Plants - Lime-Free Soil S-Z

Info - Sandy Soil
Plants - Sand Soil A-F
Plants - Sand Soil G-L
Plants - Sand Soil M-R
Plants - Sand Soil S-Z

Info - Peaty Soils
Plants - Peaty Soil A-F
Plants - Peaty Soil G-L
Plants - Peaty Soil M-R
Plants - Peaty Soil S-Z

Following parts of Level 2a,
Level 2b,
Level 2c and
Level 2d are included in separate columns
together with
Acid Soil,
Alkaline Soil,
Any Soil
,
Height and Spread,
Flowering Months and
Flower Colour in their Columns,
and also
Companion Plants to aid this plant Page,
Alpine Plant for Rock Garden Index Page
Native to UK WildFlower Plant in its Family Page in this website

and/or
Level 2cc
in the Comment Column
within each
of the Soil Type Pages of
Level 2

PLANTS PAGE MENU

 


Plant Selection by Plant Requirements
Level 2a
Sun aspect, Moisture


Plant Selection by Form
Level 2b
Tree Growth Shape
Shrub/Perennial Growth Habit


Plant Selection by Garden Use
Level 2c
Bedding
Photos - Bedding
Bog Garden
Coastal Conditions
Containers in Garden
Front of Border
Hanging Basket
Hedge
Photos - Hedging
Pollution Barrier
Rest of Border
Rock Garden
Photos - Rock Garden
Thorny Hedge
Windbreak
Woodland


Plant Selection by Garden Use
Level 2cc Others
Aquatic
Back of Shady Border
Crevice Garden
Desert Garden
Raised Bed
Scree Bed
Specimen Plant
Trees for Lawns
Trees for Small Garden
Wildflower
Photos - Wildflowers


Plant Selection by Plant Type
Level 2d
Alpine
Photos - Evergr Per
Photos - Herbac Per
Photos - RHS Herbac
Photos - Rock Garden
Annual
Bamboo
Photos - Bamboo
Biennial
Bulb
Photos - Bulb
Climber
Photos - Climber
Conifer
Deciduous Rhizome
Deciduous Shrub
Photos - Decid Shrub
Evergreen Perennial
Photos - Evergr Per
Evergreen Shrub
Photos - Evergr Shrub
Fern
Photos - Fern
Fruit Plant
Grass
Herb
Herbaceous Perennial
Photos - Herbac Per
Remaining Top Fruit
Soft Fruit
Sub-Shrub
Top Fruit
Tuber
Vegetable
Photos - Vegetable

PLANTS PAGE MENU

 


REFINING SELECTION
Plant Selection by
Flower Colour
Level 3a
Blue Flowers
Photos - Bedding
Photos - Bulb
Photos - Climber
Photos - Evergr Per
Photos - Evergr Shrub
Photos - Wild Flower

Orange Flowers
Photos - Bedding
Photos - Wild Flower

Other Colour Flowers
Photos - Bedding
Photos - Bulb
Photos - Climber
Photos - Evergr Per
Photos - Evergr Shrub
Photos - Wild Flower

Red Flowers
Photos - Bedding
Photos - Bulb
Photos - Climber
Photos - Decid Shrub
Photos - Evergr Per
Photos - Evergr Shrub
Photos - Herbac Per
Photos - Rose
Photos - Wild Flower

White Flowers
Photos - Bedding
Photos - Bulb
Photos - Climber
Photos - Decid Shrub
Photos - Decid Tree
Photos - Evergr Per
Photos - Evergr Shrub
Photos - Herbac Per
Photos - Rose
Photos - Wild Flower

Yellow Flowers
Photos - Bedding
Photos - Bulb
Photos - Climber
Photos - Decid Shrub
Photos - Evergr Per
Photos - Evergr Shrub
Photos - Herbac Per
Photos - Rose
Photos - Wild Flower


Photos - 53 Colours in its Colour Wheel Gallery

Photos - 12 Flower Colours per Month in its Bloom Colour Wheel Gallery


Plant Selection by Flower Shape
Level 3b
Photos - Bedding
Photos - Evergr Per
Photos - Herbac Per


Plant Selection by Foliage Colour
Level 3c
Aromatic Foliage
Finely Cut Leaves
Large Leaves
Other
Non-Green Foliage 1
Non-Green Foliage 2
Sword-shaped Leaves

 


PRUNING
Plant Selection by Pruning Requirements
Level 4
Pruning Plants

 


GROUNDCOVER PLANT DETAIL
Plant Selection Level 5
Plant Name - A
Plant Name - B
Plant Name - C
Plant Name - D
Plant Name - E
Plant Name - F
Plant Name - G
Plant Name - H
Plant Name - I
Plant Name - J
Plant Name - K
Plant Name - L
Plant Name - M
Plant Name - N
Plant Name - O
Plant Name - P
Plant Name - Q
Plant Name - R
Plant Name - S
Plant Name - T
Plant Name - U
Plant Name - V
Plant Name - W
Plant Name - XYZ

 


Then, finally use
COMPANION PLANTING to
aid your plant selected or to
deter Pests
Plant Selection Level 6

 

To locate mail-order nursery for plants from the UK in this gallery try using search in RHS Find a Plant.

To locate plants in the European Union (EU) try using Search Term in Gardens4You and Meilland Richardier in France.

To locate mail-order nursery for plants from America in this gallery try using search in Plant Lust.

To locate plant information in Australia try using Plant Finder in Gardening Australia.

 

Section below provides details about flowers

 

 

 

The following details come from Cactus Art:-

"A flower is the the complex sexual reproductive structure of Angiosperms, typically consisting of an axis bearing perianth parts, androecium (male) and gynoecium (female).    

Bisexual flower show four distinctive parts arranged in rings inside each other which are technically modified leaves: Sepal, petal, stamen & pistil. This flower is referred to as complete (with all four parts) and perfect (with "male" stamens and "female" pistil). The ovary ripens into a fruit and the ovules inside develop into seeds.

Incomplete flowers are lacking one or more of the four main parts. Imperfect (unisexual) flowers contain a pistil or stamens, but not both. The colourful parts of a flower and its scent attract pollinators and guide them to the nectary, usually at the base of the flower tube.

partsofaflowersmallest1a

 

Androecium (male Parts or stamens)
It is made up of the filament and anther, it is the pollen producing part of the plant.
Anther This is the part of the stamen that produces and contains pollen. 
Filament This is the fine hair-like stalk that the anther sits on top of.
Pollen This is the dust-like male reproductive cell of flowering plants.

Gynoecium (female Parts or carpels or pistil)
 It is made up of the stigma, style, and ovary. Each pistil is constructed of one to many rolled leaflike structures. Stigma This is the part of the pistil  which receives the pollen grains and on which they germinate. 
Style This is the long stalk that the stigma sits on top of. 
Ovary The part of the plant that contains the ovules. 
Ovule The part of the ovary that becomes the seeds. 

Petal 
The colorful, often bright part of the flower (corolla). 
Sepal 
The parts that look like little green leaves that cover the outside of a flower bud (calix). 
(Undifferentiated "Perianth segment" that are not clearly differentiated into sepals and petals, take the names of tepals.)"

 

 

 

The following details come from Nectary Genomics:-

"NECTAR. Many flowering plants attract potential pollinators by offering a reward of floral nectar. The primary solutes found in most nectars are varying ratios of sucrose, glucose and fructose, which can range from as little a 8% (w/w) in some species to as high as 80% in others. This abundance of simple sugars has resulted in the general perception that nectar consists of little more than sugar-water; however, numerous studies indicate that it is actually a complex mixture of components. Additional compounds found in a variety of nectars include other sugars, all 20 standard amino acids, phenolics, alkaloids, flavonoids, terpenes, vitamins, organic acids, oils, free fatty acids, metal ions and proteins.

NECTARIES. An organ known as the floral nectary is responsible for producing the complex mixture of compounds found in nectar. Nectaries can occur in different areas of flowers, and often take on diverse forms in different species, even to the point of being used for taxonomic purposes. Nectaries undergo remarkable morphological and metabolic changes during the course of floral development. For example, it is known that pre-secretory nectaries in a number of species accumulate large amounts of starch, which is followed by a rapid degradation of amyloplast granules just prior to anthesis and nectar secretion. These sugars presumably serve as a source of nectar carbohydrate.

WHY STUDY NECTAR? Nearly one-third of all worldwide crops are dependent on animals to achieve efficient pollination. In addition, U.S. pollinator-dependent crops have been estimated to have an annual value of up to $15 billion. Many crop species are largely self-incompatible (not self-fertile) and almost entirely on animal pollinators to achieve full fecundity; poor pollinator visitation has been reported to reduce yields of certain species by up to 50%."

 

The following details about DOUBLE FLOWERS comes from Wikipedia:-

"Double-flowered" describes varieties of flowers with extra petals, often containing flowers within flowers. The double-flowered trait is often noted alongside the scientific name with the abbreviation fl. pl. (flore pleno, a Latin ablative form meaning "with full flower"). The first abnormality to be documented in flowers, double flowers are popular varieties of many commercial flower types, including roses, camellias and carnations. In some double-flowered varieties all of the reproductive organs are converted to petals — as a result, they are sexually sterile and must be propagated through cuttings. Many double-flowered plants have little wildlife value as access to the nectaries is typically blocked by the mutation.

 

There is further photographic, diagramatic and text about Double Flowers from an education department - dept.ca.uky.edu - in the University of Kentucky in America.

 

"Meet the plant hunter obsessed with double-flowering blooms" - an article from The Telegraph.

 

 

 

 


Topic
Case Studies *
...Drive
...Foundations

Companion Planting
...A, B, C, D, E,
...F, G, H, I, J, K,
...L, M, N, O, P, Q,
...R, S, T, U, V, W,
...X, Y, Z
...Pest Control
...using Plants

Garden Construction
Garden Design
...RHS Mixed Borders
......Bedding Plants
......Her Perennials
......Other Plants Garden Maintenance
Glossary
Home
Library
Offbeat Glossary
Plants
...Poisonous Plants
Soil
...Soil Nutrients
Tool Shed
Useful Data

................

Topic - Plant Photo Galleries
Aquatic
Bamboo
Bedding
...by Flower Shape

Bulb
...Allium/ Anemone
...Autumn
...Colchicum/ Crocus
...Dahlia
...Gladiolus
...Hippeastrum/ Lily
...Late Summer
...Narcissus
...Spring
...Tulip
...Winter
Climber
...Clematis
...Climbers
Conifer
Deciduous Shrub
...Shrubs - Decid
Deciduous Tree
...Trees - Decid
Evergreen Perennial
...P-Evergreen A-L
...P-Evergreen M-Z
...Flower Shape
Evergreen Shrub
...Shrubs - Evgr
...Heather Shrub
Evergreen Tree
...Trees - Evgr
Fern
Grass
Hedging
Herbaceous Perennial
...P -Herbaceous
...RHS Wisley
...Flower Shape
Herb
Odds and Sods
Rhododendron
Rose
...RHS Wisley A-F
...RHS Wisley G-R
...RHS Wisley S-Z
...Rose Use
...Other Roses A-F
...Other Roses G-R
...Other Roses S-Z
Soft Fruit
Top Fruit
...Apple

...Cherry
...Pear
Vegetable

Wild Flower
with its
flower colour page,
space,
Site Map page in its flower colour
NOTE Gallery
...Blue Note
...Brown Note
...Cream Note
...Green Note
...Mauve Note
...Multi-Cols Note
...Orange Note
...Pink A-G Note
...Pink H-Z Note
...Purple Note
...Red Note
...White A-D Note
...White E-P Note
...White Q-Z Note
...Yellow A-G Note
...Yellow H-Z Note
...Shrub/Tree Note
Poisonous
Wildflower Plants

............

Topic - Flower/Foliage Colour
Colour Wheel Galleries

Following your choice using Garden Style then that changes your Plant Selection Process
Garden Style
...Infill Plants
...12 Bloom Colours per Month Index
...12 Foliage Colours per Month Index
...All Plants Index
...Cultivation, Position, Use Index
...Shape, Form
Index

or
you could use these Flower Colour Wheels with number of colours
All Flowers 53

All Flowers per Month 12
with its
Explanation of
Structure of this Website with

...User Guidelines
All Bee-Pollinated Flowers per Month 12
...Index
Rock Garden and Alpine Flower Colour Wheel with number of colours
Rock Plant Flowers 53

...Rock Plant Photos

or
these Foliage Colour Wheels structures, which I have done but until I can take the photos and I am certain of the plant label's validity, these may not progress much further
All Foliage 212

All Spring Foliage 212
All Summer Foliage 212
All Autumn Foliage 212
All Winter Foliage 212

or
Flower Colour Wheel without photos, but with links to photos
12 Bloom Colours per Month Index
...All Plants Index

............

Topic - Wildlife on Plant Photo Gallery
Butterfly
Usage of Plants
by Egg, Caterpillar, Chrysalis and Butterfly

Egg, Caterpillar, Chrysalis and Butterfly usage of
Plant A-C
Plant C-M
Plant N-W
Butterfly usage of Plant

followed by all the Wild Flower Family Pages:-

WILD FLOWER FAMILY
PAGE MENU 1


(o)Adder's Tongue
Amaranth
(o)Arrow-Grass
(o)Arum
(o)Balsam
Bamboo
(o)Barberry
(o)Bedstraw
(o)Beech
(o)Bellflower
(o)Bindweed
(o)Birch
(o)Birds-Nest
(o)Birthwort
(o)Bogbean
(o)Bog Myrtle
(o)Borage
(o)Box
(o)Broomrape
(o)Buckthorn
(o)Buddleia
(o)Bur-reed
(o)Buttercup
(o)Butterwort
(o)Cornel (Dogwood)
(o)Crowberry
(o)Crucifer (Cabbage/Mustard) 1
(o)Crucifer (Cabbage/Mustard) 2
Cypress
(o)Daffodil
(o)Daisy
(o)Daisy Cudweeds
(o)Daisy Chamomiles
(o)Daisy Thistle
(o)Daisy Catsears (o)Daisy Hawkweeds
(o)Daisy Hawksbeards
(o)Daphne
(o)Diapensia
(o)Dock Bistorts
(o)Dock Sorrels

WILD FLOWER FAMILY
PAGE MENU 2


(o)Clubmoss
(o)Duckweed
(o)Eel-Grass
(o)Elm
(o)Filmy Fern
(o)Horsetail
(o)Polypody
Quillwort
(o)Royal Fern
(o)Figwort - Mulleins
(o)Figwort - Speedwells
(o)Flax
(o)Flowering-Rush
(o)Frog-bit
(o)Fumitory
(o)Gentian
(o)Geranium
(o)Glassworts
(o)Gooseberry
(o)Goosefoot
(o)Grass 1
(o)Grass 2
(o)Grass 3
(o)Grass Soft Bromes 1
(o)Grass Soft Bromes 2
(o)Grass Soft Bromes 3 (o)Hazel
(o)Heath
(o)Hemp
(o)Herb-Paris
(o)Holly
(o)Honeysuckle
(o)Horned-Pondweed
(o)Hornwort
(o)Iris
(o)Ivy
(o)Jacobs Ladder
(o)Lily
(o)Lily Garlic
(o)Lime
(o)Lobelia
(o)Loosestrife
(o)Mallow
(o)Maple
(o)Mares-tail
(o)Marsh Pennywort
(o)Melon (Gourd/Cucumber)
 

WILD FLOWER FAMILY
PAGE MENU 3


(o)Mesem-bryanthemum
(o)Mignonette
(o)Milkwort
(o)Mistletoe
(o)Moschatel
Naiad
(o)Nettle
(o)Nightshade
(o)Oleaster
(o)Olive
(o)Orchid 1
(o)Orchid 2
(o)Orchid 3
(o)Orchid 4
(o)Parnassus-Grass
(o)Peaflower
(o)Peaflower Clover 1
(o)Peaflower Clover 2
(o)Peaflower Clover 3
(o)Peaflower Vetches/Peas
Peony
(o)Periwinkle
Pillwort
Pine
(o)Pink 1
(o)Pink 2
Pipewort
(o)Pitcher-Plant
(o)Plantain
(o)Pondweed
(o)Poppy
(o)Primrose
(o)Purslane
Rannock Rush
(o)Reedmace
(o)Rockrose
(o)Rose 1
(o)Rose 2
(o)Rose 3
(o)Rose 4
(o)Rush
(o)Rush Woodrushes
(o)Saint Johns Wort
Saltmarsh Grasses
(o)Sandalwood
(o)Saxifrage
 

WILD FLOWER FAMILY
PAGE MENU 4


Seaheath
(o)Sea Lavender
(o)Sedge Rush-like
(o)Sedges Carex 1
(o)Sedges Carex 2
(o)Sedges Carex 3
(o)Sedges Carex 4
(o)Spindle-Tree
(o)Spurge
(o)Stonecrop
(o)Sundew
(o)Tamarisk
Tassel Pondweed
(o)Teasel
(o)Thyme 1
(o)Thyme 2
(o)Umbellifer 1
(o)Umbellifer 2
(o)Valerian
(o)Verbena
(o)Violet
(o)Water Fern
(o)Waterlily
(o)Water Milfoil
(o)Water Plantain
(o)Water Starwort
Waterwort
(o)Willow
(o)Willow-Herb
(o)Wintergreen
(o)Wood-Sorrel
(o)Yam
(o)Yew

 

It is worth remembering that especially with roses that the colour of the petals of the flower may change - The following photos are of Rosa 'Lincolnshire Poacher' which I took on the same day in R.V. Roger's Nursery Field:-

rosalincolnshirepoacherflot91a1a1

Closed Bud

rosalincolnshirepoacherflot92a1a1

Opening Bud

rosalincolnshirepoacherflot93a1a1

Juvenile Flower

rosalincolnshirepoacherflot94a1a1

Older Juvenile Flower

rosalincolnshirepoacherflot95a1a1

Middle-aged Flower - Flower Colour in Season in its
Rose Description Page is
"Buff Yellow, with a very slight pink tint at the edges in May-October."

rosalincolnshirepoacherflot96a1a1

Mature Flower

rosalincolnshirepoacherflot97a1a1

Juvenile Flower and Dying Flower

rosalincolnshirepoacherflot98a1a1

Form of Rose Bush

There are 720 roses in the Rose Galleries; many of which have the above series of pictures in their respective Rose Description Page.

So one might avoid the disappointment that the 2 elephants had when their trunks were entwined instead of them each carrying their trunk using their own trunk, and your disappointment of buying a rose to discover that the colour you bought it for is only the case when it has its juvenile flowers; if you look at all the photos of the roses in the respective Rose Description Page!!!!